
M A N N I N G

Nir Dobovizki

Asynchronous and multithreaded programming

A simple deadlock

A classic deadlock: a very common multithreading problem where one thread is holding
resource A while waiting for B and a second thread is holding B while waiting for A,

resulting in both threads waiting forever. We will talk about deadlocks in chapter 4 and
then discuss them in more detail, as well as how to avoid them, in chapter 7.

First thread Second thread

Lock A

Lock B

Release B

Release A

Lock B

Lock A

Release A

Release B

waitin
g fo

rwaiting for

Both threads
are stuck here.

C# Concurrency

MANN I NG
Shelter Island

C# Concurrency

Nir Dobovizki

Asynchronous and
multithreaded programming

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633438651
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

	 Development editor: 	 Doug Rudder
	 Technical editor: 	 Paul Grebenc
	 Review editor: 	 Dunja NikitoviÊ
	 Production editor: 	 Kathy Rossland
	 Copy editor: 	 Lana Todorovic-Arndt
	 Proofreader: 	 Melody Dolab
	 Technical proofreader: 	 Tanya Wilke
	 Typesetter: 	 Tamara ŠveliÊ SabljiÊ
	 Cover designer: 	 Marija Tudor

To my wonderful wife, Analia

vii

brief contents
Part 1		 Asynchronous programming and multithreading	
		 basics..1

	 1	 ■ 	 Asynchronous programming and multithreading   3
	 2	 ■ 	 The compiler rewrites your code  13
	 3	 ■ 	 The async and await keywords  21
	 4	 ■ 	 Multithreading basics  38
	 5	 ■ 	 async/await and multithreading  58
	 6	 ■ 	 When to use async/await  69
	 7	 ■ 	 Classic multithreading pitfalls and how to avoid them  81

Part 2		 Advanced uses of async/await and
		 multithreading.. 103

	 8	 ■ 	 Processing a sequence of items in the background  105
	 9	 ■ 	 Canceling background tasks  122
	 10	 ■ 	 Await your own events  134
	 11	 ■ 	 Controlling on which thread your asynchronous code runs  147
	 12	 ■ 	 Exceptions and async/await  166
	 13	 ■ 	 Thread-safe collections  173
	 14	 ■ 	 Generating collections asynchronously/await foreach and

IAsyncEnumerable  203

ix

contents
preface   xiv
acknowledgments   xvi
about this book   xviii
about the author   xxi
about the cover illustration   xxii

Part 1	 Asynchronous programming and	
multithreading basics..................................1

1 Asynchronous programming and multithreading   3
1.1	 What is multithreading?  4

1.2	 Introducing multicore CPUs  6

1.3	 Asynchronous programming  8

1.4	 Using multithreading and asynchronous programming
together  11

1.5	 Software efficiency and cloud computing  11

2 The compiler rewrites your code  13
2.1	 Lambda functions  14

2.2	 Yield return  16

x contentsx

	 3	 The async and await keywords  21
	 3.1	 Asynchronous code complexity  22

	 3.2	 Introducing Task and Task<T>  23
Are we there yet?  25 ■ Wake me up when we get there  26
The synchronous option  27 ■ After the task has completed  28

	 3.3	 How does async/await work?  29

	 3.4	 async void methods  33

	 3.5	 ValueTask and ValueTask<T>  35

	 3.6	 What about multithreading?  36

	 4	 Multithreading basics  38
	 4.1	 Different ways to run in another thread  39

Thread.Start  39 ■ The thread pool  42 ■ Task.Run  44

	 4.2	 Accessing the same variables from multiple threads  46
No shared data  48 ■ Immutable shared data  49
Locks and mutexes  49 ■ Deadlocks  50

	 4.3	 Special considerations for native UI apps  52

	 4.4	 Waiting for another thread  52

	 4.5	 Other synchronization methods  53

	 4.6	 Thread settings  54
Thread background status  55 ■ Language and locale  55
COM Apartment  55 ■ Current user  55 ■ Thread priority  56

	 5	 async/await and multithreading  58
	 5.1	 Asynchronous programming and multithreading  59

	 5.2	 Where does code run after await?  62

	 5.3	 Locks and async/await  64

	 5.4	 UI threads   67

	 6	 When to use async/await  69
	 6.1	 Asynchronous benefits on servers  70

	 6.2	 Asynchronous benefits on native client applications  75

	 xicontents 	 xi

	 6.3	 The downside of async/await  76
Asynchronous programming is contagious  77 ■ Asynchronous
programming has more edge cases  78 ■ Multithreading has even
more edge cases  79 ■ async/await is expensive  79

	 6.4	 When to use async await  79

	 7	 Classic multithreading pitfalls and how to avoid them  81
	 7.1	 Partial updates  82

	 7.2	 Memory access reordering  85

	 7.3	 Deadlocks  88

	 7.4	 Race conditions  94

	 7.5	 Synchronization  97

	 7.6	 Starvation  99

Part 2	 Advanced uses of async/await and	
		 multithreading... 103

	 8	 Processing a sequence of items in the background  105
	 8.1	 Processing items in parallel  106

Processing items in parallel with the Thread class  107
Processing items in parallel with the thread pool  108
Asynchronously processing items in parallel  110
The Parallel class  112

	 8.2	 Processing items sequentially in the background  115
Processing items sequentially in the background with
the Thread class  115 ■ The work queue pattern and
BlockingCollection  117 ■ Processing important items with
persistent queues  119

	 9	 Canceling background tasks  122
	 9.1	 Introducing CancellationToken  122

	 9.2	 Canceling using an exception  130

	 9.3	 Getting a callback when the caller cancels our operation  130

	 9.4	 Implementing timeouts  131

	 9.5	 Combining cancellation methods  132

	 9.6	 Special cancellation tokens  133

xii contentsxii

	 10	 Await your own events  134
	 10.1	 Introducing TaskCompletionSource  135

	 10.2	 Choosing where continuations run  139

	 10.3	 Example: Waiting for initialization  140

	 10.4	 Example: Adapting old APIs  141

	 10.5	 Old-style asynchronous operations (BeginXXX,
EndXXX)  142

	 10.6	 Example: Asynchronous data structures  143

	 11	 Controlling on which thread your asynchronous code runs  147
	 11.1	 await-threading behavior  148

await in UI threads  148 ■ await in non-UI threads  150

	 11.2	 Synchronization contexts  151

	 11.3	 Breaking away—ConfigureAwait(false)  154

	 11.4	 More ConfigureAwait options  161

	 11.5	 Letting other code run: Task.Yield  162

	 11.6	 Task schedulers  163

	 12	 Exceptions and async/await  166
	 12.1	 Exceptions and asynchronous code  167

	 12.2	 await and AggregateException  170

	 12.3	 The case of the lost exception  171

	 12.4	 Exceptions and async void methods  171

	 13	 Thread-safe collections  173
	 13.1	 The problems with using regular collections   174

	 13.2	 The concurrent collections  178
ConcurrentDictionary<TKey,TValue>  178
BlockingCollection<T>  181 ■ Async alternatives for
BlockingCollection  184 ■ ConcurrentQueue<T> and
ConcurrentStack<T>  185 ■ ConcurrentBag<T>  186
When to use the concurrent collections  186 ■ When not to
use the concurrent collections   186

	 xiiicontents 	 xiii

	 13.3	 The immutable collections  187
How immutable collections work  187 ■ How to use the immutable
collections   193 ■ ImmutableInterlocked  194
ImmutableDictionary<TKey,TValue>  195
ImmutableHashSet<T> and ImmutableSortedSet<T>  197
ImmutableList<T>  197 ■ ImmutableQueue<T> and
ImmutableStack<T>  197 ■ ImmutableArray<T>  198
When to use the immutable collections  199

	 13.4	 The frozen collections  199
When to use the frozen collections  201

	 14	 Generating collections asynchronously/await foreach and 		
		 IAsyncEnumerable  203

	 14.1	 Iterating over an asynchronous collection  204

	 14.2	 Generating an asynchronous collection  206

	 14.3	 Canceling an asynchronous collection  209

	 14.4	 Other options  211

	 14.5	 IAsyncEnumerable<T> and LINQ  212

	 14.6	 Example: Iterating over asynchronously retrieved data  212
Example: BlockingCollection<T>-like asynchronous queue  213

		 index  219

xiv

preface
I’ve been a software developer for over 30 years now and have been developing
high-performance servers using multithreading and asynchronous programming since
the late 1990s. I’ve been using C# since 2003. For the last decade and a bit, I’ve worked
as a consultant, coming into a project for a short period of time and helping solve a
specific problem. Over that decade, I’ve had the privilege of visiting many companies,
and I’ve gotten to see and help with a lot of projects.

While every project is obviously completely different, with each company invent-
ing its own innovative, disruptive, and one-of-a-kind technology, after you encounter
enough projects, you start to see some similarities. And one thing I’ve seen time and
time again are problems arising from incorrect usage of multithreading and asynchro-
nous programming.

Multithreading is a straightforward concept: it involves running multiple tasks simul-
taneously. It is notoriously difficult to get it right, but despite this difficulty, it has been
widely used for a long time. Developers like you, who take the time to study multithread-
ing through books, are able to use it effectively.

Asynchronous programming has existed since the invention of the microprocessor
and has long been used in high-performance servers. However, it gained wider popu-
larity among average developers when the async/await feature was introduced in C# in
2012. (It was introduced in JavaScript earlier, but in a limited way.) Based on my obser-
vations of various projects and my experience conducting job interviews, I’ve found
that very few people understand how async/await works.

The problems arising from a lack of knowledge in multithreading and asynchronous
programming are quite apparent. In just the month or so that I discussed publishing
this book with Manning, I taught multithreading and async/await at three different
companies.

	 xvpreface 	 xv

And this is how this book was born. What followed was a little more than two years of
very deep diving into multithreading and asynchronous programming in C#. During
this time, I’ve learned a lot. There is truly no better way to learn something than teach-
ing it, and I hope this book will be at least as beneficial to you as writing it was to me.

xvi

acknowledgments
I truly believe this is a very good book, but I didn’t write it alone. Writing a book is a
team effort, and it takes an enormous amount of work by many people. Without all
those people, this book wouldn’t be as good and, most likely, it wouldn’t exist at all.

First, I want to thank my development editor at Manning, Doug Rudder, who had
the patience to teach this first-time author how to write a technical book. Associate pub-
lisher Mike Stephens, who agreed to publish my idea of a book, helped with support
and feedback. Using a food analogy in the first chapter was his idea. And technical edi-
tor Paul Grebenc was the first line of defense against technical mistakes. Paul is a Prin-
cipal Software Developer at OpenText. He has over 25 years of professional experience
in software development, working primarily with C# and Java. His primary interests are
systems involving multithreading, asynchronous programming, and networking.

Next, I also want to thank all the reviewers who reviewed drafts of this book and
everyone who commented while the book was in MEAP: your comments have been
invaluable to improving the book. To all the reviewers—Aldo Biondo, Alexandre San-
tos Costa, Allan Tabilog, Amrah Umudlu, Andriy Stosyk, Barry Wallis, Chriss Barnard,
David Paccoud, Dustin Metzgar, Geert Van Laethem, Jason Down, Jason Hales, Jean-
Paul Malherbe, Jeff Shergalis, Jeremy Caney, Jim Welch, Jiří Činčura, Joe Cuevas, Jon-
athan Blair, Jort Rodenburg, Jose Antonio Martinez, Julien Pohie, Krishna Chaitanya
Anipindi, Marek Petak, Mark Elston, Markus Wolff, Mikkel Arentoft, Milorad Imbra,
Oliver Korten, Onofrei George, Sachin Handiekar, Simon Seyag, Stefan Turalski, Sumit
Singh, and Vincent Delcoigne—your suggestions helped make this book better.

I also want to give my personal thanks to everyone who bought the book while in early
access. Seeing that people are interested enough to spend their hard-earned money on

	 xviiacknowledgments 	 xvii

a book I wrote is a wonderful feeling, and it was an important part of the motivation to
complete the book.

And last, but most important, I want to thank my family, and especially my wife, who
put up with all my nonsense in general and, in particular, with me spending a lot of our
free time in my office writing.

xviii

about this book
This book is designed to help C# developers write safe and efficient multithreaded and
asynchronous application code. It focuses on practical techniques and features you are
likely to encounter in normal day-to-day software development.

It delves into all the details you need to know to write and debug multithreaded and
asynchronous code. It leaves out the exotic, fun techniques that are only applicable if
you need to build something like your own database server, but that are too compli-
cated for normal application code and will probably get you into trouble if you try to use
them in normal code, because normal multithreading is difficult enough as it is.

Who should read this book
This book is for any C# developer who wants to improve their knowledge of multi-
threading and asynchronous programming. The information in this book is applicable
to any version of .NET, .NET Core, and .NET Framework released since 2012 and to
both Windows and Linux (obviously only for .NET Core and .NET 5 and later, since
earlier versions do not support Linux).

The book focuses more on backend development but also covers what you need to
know to write UI applications.

How this book is organized: A road map
This book has two parts that include 14 chapters.

Part 1 covers the basics of multithreading and async/await in C#:

¡	Chapter 1 introduces the concepts and terminology of multithreading and asyn-
chronous programming.

	 xixabout this book 	 xix

¡	Chapter 2 covers the techniques that the .NET compiler uses to implement
advanced functionality.

¡	Chapter 3 is a deep dive into how async/await works.

¡	Chapter 4 explains multithreading.

¡	Chapter 5 ties chapters 3 and 4 together and shows how async/await interacts
with multithreading.

¡	Chapter 6 talks about when you should use async/await—just because you can
use it doesn’t mean you should use it everywhere.

¡	Chapter 7 closes the first part with information about the common multithread-
ing pitfalls, and more importantly, what you have to do to avoid them.

Part 2 is about how to use the information you learned about in part 1:

¡	Chapter 8 is about processing data in the background.

¡	Chapter 9 is about stopping background processing.

¡	Chapter 10 teaches how to build advanced asynchronous components that do
more than just combine built-in asynchronous operations.

¡	Chapter 11 discusses advanced use cases of async/await and threading.

¡	Chapter 12 helps you debug a problem with exceptions in asynchronous code.

¡	Chapter 13 goes over thread-safe collections.

¡	Chapter 14 shows how you can build things that work like asynchronous collec-
tions yourself.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings include line-continuation markers
(➥). Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/csharp-concurrency.

Source code for the examples in this book is available for download from https://
github.com/nirdobovizki/AsynchronousAndMultithreadedProgrammingInCSharp
and the author web site at https://nirdobovizki.com. The complete code for the exam-
ples in the book is also available for download from the Manning website at https://
www.manning.com/books/csharp-concurrency.

https://livebook.manning.com/book/csharp-concurrency
https://github.com/nirdobovizki/AsynchronousAndMultithreadedProgrammingInCSharp
https://github.com/nirdobovizki/AsynchronousAndMultithreadedProgrammingInCSharp
https://nirdobovizki.com
https://www.manning.com/books/csharp-concurrency
https://www.manning.com/books/csharp-concurrency

xx about this bookxx

liveBook discussion forum
Purchase of C# Concurrency includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes
for yourself, ask and answer technical questions, and receive help from the author
and other users. To access the forum, go to https://livebook.manning.com/book/
csharp-concurrency/discussion. You can also learn more about Manning’s forums and
the rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

https://livebook.manning.com/book/csharp-concurrency/discussion
https://livebook.manning.com/book/csharp-concurrency/discussion
https://livebook.manning.com/discussion

xxi

about the author
Nir Dobovizki is a software architect and a senior
consultant. He’s worked on concurrent and asynchro-
nous systems, mostly high-performance servers, since
the late 1990s. He’s used both in native code and, since
the introduction of .NET 1.1 in 2003, .NET and C#. He
has worked with multiple companies in the medical,
defense, and manufacturing industries to solve prob-
lems arising from incorrect usage of multithreading
and asynchronous programming.

xxii

about the cover illustration
The figure on the cover of C# Concurrency is “Homme Tatar de Tobolsk” or “Tatar man
from Tobolsk,” taken from a collection by Jacques Grasset de Saint-Sauveur, published
in 1788. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station
in life was just by their dress. Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional culture cen-
turies ago, brought back to life by pictures from collections such as this one.

Part 1

Asynchronous programming
and multithreading basics

The first part of this book covers asynchronous programming and multi-
threading in C#, explaining what they are and how to implement them. This part
highlights common pitfalls and provides guidance on how to avoid them.

We start with the concepts and terminology of multithreading and asynchro-
nous programming, as used in computer science generally and in C# specifically
(chapter 1). Next, we’ll dive right into how asynchronous programming with
async/await works in C# (chapters 2 and 3). Then, we’ll discuss multithreading
in C# (chapter 4) and how multithreading and asynchronous programming work
together (chapter 5). Finally, we’ll talk about when to use async/await (chapter
6) and how to use multithreading properly (chapter 7).

By the end of part 1, you will learn how to write correct multithread code and
use async/await properly.

3

1Asynchronous
programming and

multithreading

This chapter covers

¡	Introduction to multithreading
¡	Introduction to asynchronous programming
¡	Asynchronous programming and multithreading 	
	 used together

As software developers, we often strive to make our applications faster, more respon-
sive, and more efficient. One way to achieve this is by enabling the computer to
perform multiple tasks simultaneously, maximizing the use of existing CPU cores.
Multithreading and asynchronous programming are two techniques commonly
used for this task.

Multithreading allows a computer to appear as if it is executing several tasks at
once, even when the number of tasks exceeds the number of CPU cores. In con-
trast, asynchronous programming focuses on optimizing CPU usage during oper-
ations that would typically make it wait, which ensures the CPU remains active and
productive.

4 Chapter 1  Asynchronous programming and multithreading

Enabling a computer to perform multiple tasks simultaneously is extremely useful. It
helps keep native applications responsive while they work and is essential for building
high-performance servers that can interact with many clients at the same time.

Both techniques can be employed to create responsive client applications or servers
that handle a few clients. But when combined, they can greatly boost performance,
allowing servers to handle thousands of clients at once.

This chapter will introduce you to multithreading and asynchronous programming
and illustrate why they are important. In the rest of the book, we’ll talk about how to use
them correctly in .NET and C#, especially focusing on the C# async/await feature. You
will learn how these technologies work, go over the common pitfalls, and see how to use
them correctly.

1.1	 What is multithreading?
Before we begin talking about async/await, we need to understand what multithread-
ing and asynchronous programming are. To do so, we are going to talk a bit about
web servers and pizza making. We’ll start with the pizza (because it’s tastier than a web
server).

The high-level process of pizza making in a takeout place is typically as follows:

1	 The cook receives an order.

2	 The cook does stuff—takes preprepared dough, shapes it, and adds sauce,
cheese, and toppings.

3	 The cook places the pizza in the oven and waits for it to bake (this is the longest
bit).

4	 The cook then does more stuff—takes the pizza out of the oven, cuts it, and
places it in a box.

5	 The cook hands the pizza to the delivery person.

This is not a cookbook, so obviously, our pizza baking is a metaphor for one of the
simplest server scenarios out there—a web server serving static files. The high-level
process for a simple web server is as follows:

1	 The server receives a web request.

2	 The server performs some processing to figure out what needs to be done.

3	 The server reads a file (this is the longest bit).

4	 The server does some more processing (such as packaging the file content).

5	 The server sends the file content back to the browser.

For most of the chapter, we are going to ignore the first and last steps because, in most
backend web frameworks (including ASP.NET and ASP.NET Core), they are handled
by the framework and not by our code. We will talk about them briefly near the end of
this chapter. Figure 1.1 illustrates the web request process.

Now back to the pizza. In the simplest case, the cook will follow the steps in order,
completely finishing one pizza before starting the next one. While the pizza is baking,

	 5What is multithreading?

the cook will just stand there staring at the oven
and do nothing (this is a fully synchronous single-
threaded version of the process).

In the world of web servers, the cook is the
CPU. In this single-threaded web server, we have
straightforward code that performs the opera-
tions required to complete the web request, and
while the file is read from disk, the CPU is frozen
doing nothing (in practice, the operating system
will suspend our thread while this happens and
hand over the CPU to another program, but from
our program point of view, it looks like the CPU
is frozen).

This version of the process has some
advantages—it is simple and easy to understand.
You can look at the current step and know exactly
where we are in the process. As two things are
never taking place at the same time, different
jobs can’t interfere with each other. Finally, this
version requires the least amount of space and
uses fewer resources at any one time because we
only handle one web request (or pizza) at a time.

This single-threaded synchronous version of
the process is apparently wasteful because the
cook/CPU spends most of their time doing nothing while the pizza is baking in the
oven (or the file is retrieved from disk), and if our pizzeria isn’t going out of business,
we are going to receive new orders faster than we can fulfill them.

For this reason, we want the cook to make more than one pizza at the same time. One
approach might be to use a timer and have it beep every few seconds. Every time the
timer beeps, the cook will stop whatever they are doing and make a note of what they
did when they stopped. The cook will then start a new pizza or continue making the pre-
vious one (ignoring the unready pizzas in the oven) until the timer beeps again.

In this version, the cook is attempting to do multiple things at the same time, and
each of those things is called a thread. Each thread represents a sequence of operations
that can happen in parallel with other similar or different sequences.

This example may seem silly, as it is obviously inefficient, and our cook will spend too
much time putting things away and picking up stuff. Yet this is exactly how multithread-
ing works. Inside the CPU, there’s a timer that signals when the CPU should switch to
the next thread, and with every switch, the CPU needs to store whatever it was doing
and load the other thread’s status (this is called a context switch).

For example, when your code reads a file, the thread can’t do anything until the
file’s data is retrieved from disk. During this time, we say the thread is blocked. Having
the system allocate CPU time to a blocked thread would obviously be wasteful, so when

Time

Processing

Read file
(waiting)

Processing

Web request received
(not our code)

Send response to
browser (not our code).

Figure 1.1  Single-threaded, single-
request flow

6 Chapter 1  Asynchronous programming and multithreading

a thread begins reading a file, it is switched to a blocked state by the operating system.
When entering this state, the thread will immediately release the CPU to the next wait-
ing thread (possibly from another program), and the operating system will not assign
any CPU time to the thread while in this state. When the system finishes reading the file,
the thread exits the blocked state and is again eligible for CPU time.

The operations that can cause the thread to become blocked are called blocking oper-
ations. All file and network access operations are blocking, as is anything else that com-
municates with anything outside the CPU and memory; moreover, all operations that
wait for another thread can block.

Back in the pizzeria, in addition to the time we spend switching between pizzas,
there’s also all the information the cook needs to get back to exactly the same place
they were before switching tasks. In our software, every thread, even if not running,
consumes some memory, so while it’s possible to create a large number of threads, each
of them executing a blocking operation (so they are blocked most of the time and not
consuming CPU time), this is wasteful of memory. It will slow the program down as we
increase the number of threads because we must manage all the threads. At some point,
we will either spend so much time managing threads that no useful work will get done
or we will just run out of memory and crash.

Even with all this inefficiency, the multithreading cook, who jumps from one pizza to
another like a crazy person, will make more pizzas in the same amount of time, unless
they can’t make progress or crash (I know, a cook can’t crash; no metaphor is perfect).
This mostly happens because the single-threaded cooks from before spent most of their
time waiting while the pizza was in the oven.

As illustrated in figure 1.2, because we only have one CPU core (I know, everyone
has multicore CPUs nowadays; we’ll talk about them soon), we can’t really do two things
simultaneously. All the processing parts happen one after the other and are not truly in
parallel; however, the CPU can wait as many times as you like in parallel. And that’s why
our multithread version managed to process three requests in significantly less time
than it took the single-threaded version to process two.

If you look closely at figure 1.2, you can see that while the single-threaded version
handled the first request faster, the multithreaded version completed all three before
the single-threaded version managed to complete the second request. This shows us
the big advantage of multithreading, which is a much better utilization of the CPU in
scenarios that involve waiting. It also shows the price we pay—just a little bit of extra
overhead every step of the way.

Until now, we’ve talked about single-core CPUs, but all modern CPUs are multicore.
How does that change things?

1.2	 Introducing multicore CPUs
Multicore CPUs are conceptually simple. They are just multiple single-core CPUs
packed into the same physical chip.

	 7Introducing multicore CPUs

In our pizzeria, having an eight-core CPU is equivalent to having eight cooks carrying
out the pizza-making tasks. In the previous example, we had one cook who could only
do one thing at a time but pretended to do multiple things by switching between them
quickly. Now we have eight cooks, each able to do one task at the same time (for a
total of eight tasks at once), and each pretending to do multiple things by switching
between tasks quickly.

Time

Multithreaded versionSingle-threaded version

Web request received
(not our code)

Proc...

...ess...

...ing

Proc...
Proc...

...ess...
...ess...

...ing
...ing

Read file
(waiting) Read file

(waiting)

Read file
(waiting)

Proc...

...ess...

...ing

Proc...

...ess...

...ing

Proc...

...ess...

...ing

Web request received
(not our code)

Thread 1 Thread 2 Thread 3

Send response to
browser (not our code). Send response to

browser (not our code). Send response to
browser (not our code).

Web request received
(not our code)

First
request

done

Last
request

done

Send response to
browser and get next

request (not our code).

Processing

Read file
(waiting)

Processing

Web request received
(not our code)

Processing

Read file
(waiting)

First
request

done

Second
request not

done yet

Figure 1.2  Single-threaded versus multithread with multiple requests

8 Chapter 1  Asynchronous programming and multithreading

In software terms, with multicore CPUs, you can really have multiple threads run-
ning simultaneously. When we had a single-core CPU, we sliced the work into tiny parts
and interleaved them to make it seem like they were running at the same time (while,
in fact, only one thing could run). Now, with our example eight-core CPU, we still slice
the work into tiny parts and interleave them, but we can run eight of those parts at the
same time.

Theoretically, eight cooks can make more pizzas than only one; however, multiple
cooks may unintentionally interfere with each other’s work. For example, they might
bump into each other, try to put a pizza in the oven at the same time, or need to use the
same pizza cutter—the more cooks we have, the greater the chance of this happening.

Figure 1.3 takes the same multithreaded work we had in figure 1.2 and shows how it
would run on a dual-core CPU (just two cores because a diagram with enough work for
an eight-core CPU would be too big to illustrate here).

Note that by default, there is no persistent relation between threads and cores. A
thread can jump between cores at any time (you can set threads to run on specific cores,
which is called “thread affinity,” and except in really special circumstances, something
you shouldn’t do).

The dual-core CPU cut the time we spent processing by half compared to the
single-core version but didn’t affect the time we spent waiting. So while we did get a
significant speedup, it did not cut the total time in half. Until now, we’ve gotten most
of the performance improvement from doing other stuff while waiting for the hard
drive to read the file, but we’ve paid for it with all the overhead and complexity of
multithreading. Maybe we can reduce this overhead.

1.3	 Asynchronous programming
Back in the pizzeria, there’s a rational solution we ignored. The cook should make a
single pizza without stopping and switching to other pizzas, but when the pizza is in
the oven, they can start the next pizza instead of just sitting there. Later, whenever the
cook finishes something, they can check whether the pizza in the oven is ready, and if
it is, they can take it out, cut it, put it in a box, and hand it over to the delivery person.

This is an example of asynchronous programming. Whenever the CPU needs to do
something that happens outside the CPU itself (for example, reading a file), it sends
the job to the component that handles it (the disk controller) and asks this component
to notify the CPU when it’s done.

The asynchronous (also called nonblocking) version of the file function just queues
the operation with the operating system (that will then queue it with the disk control-
ler) and returns immediately, letting the same thread do other stuff instead of waiting
(figure 1.4). Later, we can check whether the operation has been completed and access
the resulting data.

If you compare all the diagrams in this chapter, you will see that this single-threaded
asynchronous version is the fastest of all the options. It completes the first request
almost as fast as the first single-threaded version while also completing the last request

	 9Asynchronous programming

almost as fast as the dual-core multithreaded version (without even using a second
core), which makes it the most performant version so far.

You can also clearly see that figure 1.4 is kind of a mess and is more difficult to read
than the previous diagrams, and that is even without indicating in the diagram that the
“second processing” steps depend on completing the read operations. The thing that
makes the diagram more difficult to understand is that you can no longer see the entire
process; the work done for every request is broken up into parts, and unlike the thread-
ing example, those parts are not connected to each other.

This is the reason that while multithreading is widely used, until the introduction
of async/await, asynchronous programming has only been used by people building
high-performance servers (or using environments where you have no other choice;

Time

Multithreaded dual core

Thread 1 Thread 2 Thread 3

Web request received
(not our code)

Proc...
...ess...

...ing

Proc...
Proc...

...ess... ...ess...

...ing ...ing

Read file
(waiting)

Read file
(waiting) Read file

(waiting)

Proc...

...ess...

...ing

Proc...

...ess...

...ing

Proc...
...ess...

...ing

Web request received
(not our code)

Send response to
browser (not our code).

Send response to
browser (not our code). Send response to

browser (not our code).

Web request received
(not our code)

- Running on core 1 - Running on core 21 2

1

1

1

1

1

1

1

2

2

2

2

2

2

2

1

1

2

2

Figure 1.3  Three requests on a dual-core CPU

10 Chapter 1  Asynchronous programming and multithreading

for example, JavaScript). Like in figure 1.4, the code must be broken into parts that
are written separately, which made the code difficult to write and even more difficult
to understand—until C# introduced the async/await feature that lets one write asyn-
chronous code as if it were normal synchronous code.

Also, in figure 1.4, I indicated that I use the same asynchronous techniques as for
reading the file when sending the response back to the browser. That’s because the
first and last steps in our web request sequence, “get web request” and “send response
to browser,” are both performed mostly by the network card and not the CPU, just like
reading the file is done by the hard drive, so the two can be performed asynchronously
without making the CPU wait.

Even with multithreading only, without asynchronous programming, it’s completely
possible to write servers that can handle low and medium loads by opening a thread

Asynchronous version

Time

Read file 2
(hard drive)

Send response to
browser (not our code).

First processing for
request 1

Read file 1
(hard drive)

Second processing
for request 1

Multiple web requests
received (not our code)

First processing for
request 2

First processing for
request 3

Read file 3
(hard drive)

Second processing
for request 2

Second processing
for request 3

Ask hard drive to read file 1.

Ask hard drive to read file 2.

Ask hard drive to read file 3.

Ask network to send response 1.

Ask network to send response 2.

Ask network to send response 3.

Send response to
browser (not our code).

Send response to
browser (not our code).

Figure 1.4  Single-threaded asynchronous web server with three web requests

	 11Software efficiency and cloud computing

for every connection. However, if you need to build a server that can serve thousands
of connections at the same time, the overhead of so many threads will slow the server
down to the point of not being able to handle the load or will crash the server outright.

We talked about asynchronous programming as a way to avoid multithreading, but
we can’t take advantage of the power of multicore CPUs without multithreading. Let’s
see whether we can use multithreading and asynchronous programming jointly to get
even more performance.

1.4	 Using multithreading and asynchronous programming together
Let’s jump back to the pizzeria one last time. We can improve our pizza making even
more: instead of having the cook actively check the oven, just make the oven beep
when the pizza is ready, and when the oven beeps, the cook can stop what they are
doing, take the pizza out, put it in a box, hand it over to the delivery person, and then
get back to what they were doing.

The software equivalent is, when starting the asynchronous operation, to ask the
operating system to notify our program by calling a callback function we registered
when starting the asynchronous operation. That callback function will need to run on
a new thread (actually, a thread pool thread; we will talk about the thread pool later
in the book) because the original calling thread is not waiting and is currently doing
something else. That’s why asynchronous programming and multithreading work well
together.

1.5	 Software efficiency and cloud computing
Today, we can just use our favorite cloud provider’s “serverless” option and run 10,000
copies of our single-threaded code at the same time. So do we need to bother with all
this multithreaded and asynchronous code?

Well, theoretically, we can just throw a lot of processing power at the problem. With
the modern cloud offerings, you can basically get infinite compute power whenever you
want, but you do have to pay for it. Because you pay exactly for what you use, every bit of
efficiency you get saves you money.

Before cloud computing, you would buy a server, and as long as you didn’t max out
the server you bought, the efficiency of your code didn’t really matter. Today, shaving
off a part of a second of every request in a high-load site can save a significant amount
of money.

In the past, CPUs got faster all the time. The rule of thumb was that CPU speed
doubled every two years, which meant that you could fix slow software by waiting
a bit and buying a new computer. Unfortunately, this is no longer the case because
the modern CPU got so close to the maximum number of transistors that can be put
in a specific area that it is basically not possible to make a single core much faster.
Consequently, the single-thread performance of CPUs now rises rather slowly, and our
only choice to improve performance is to use more CPU cores (there’s a very influential
paper called “The Free Lunch Is Over” by Herb Sutter covering this topic; see www
.gotw.ca/publications/concurrency-ddj.htm).

www.gotw.ca/publications/concurrency-ddj.htm
www.gotw.ca/publications/concurrency-ddj.htm

12 Chapter 1  Asynchronous programming and multithreading

Nonetheless, the modern CPU is still extremely fast, faster than other computer
components, and obviously, much faster than any human. Therefore, a typical CPU
spends most of its time waiting. Sometimes it’s waiting for user input, and other times,
it’s waiting for the hard drive, but it’s still waiting. Multithreading and asynchronous
programming enable employing this waiting time to do useful work.

Summary

¡	Multithreading is switching between several things on the same CPU fast enough
to make it feel like they are all running simultaneously.

¡	A thread is one of those things running simultaneously.

¡	A thread has significant overhead.

¡	Switching between threads is called context switching, and it also has overhead.

¡	When doing stuff that happens outside the CPU, such as reading a file or using
a network, the thread must wait until the operation is complete to get the result
and continue to operate on it, which is called a blocking operation.

¡	Asynchronous programming frees up the thread while operations are taking
place by asking the system to send a notification when the operation ends instead
of waiting, which is called a nonblocking operation. The program then needs to pick
up processing later when the data is available, usually on a different thread.

¡	We need asynchronous and multithreading techniques because the complexity
of our software grows faster than the single-thread performance of our CPUs.

¡	Because in cloud computing we pay for the exact resources we use, asynchronous
and multithreading techniques that increase efficiency can save us some money.

13

2The compiler rewrites
your code

This chapter covers

¡	How the C# compiler supports features that do not 	
	 exist in the .NET runtime
¡	The implementation of lambda functions by the 	
	 compiler
¡	The implementation of yield return by the 	
	 compiler

The compiler modifies your code, which means that the output is not a direct rep-
resentation of the source code. This is done for two main reasons: to reduce the
amount of typing required by boilerplate code generation and to add features not
supported by the underlying platform. One such feature is async/await, which is
primarily implemented by the C# compiler rather than the .NET runtime. To write
correct asynchronous code, avoid the potential pitfalls, and especially to debug
code, it’s important to understand how the compiler transforms your code, that is,
what happens when your code runs.

This chapter discusses how the C# compiler rewrites your code during compi-
lation. However, because async/await is probably the most complicated code

14 Chapter 2  The compiler rewrites your code

transformation in the current version of C#, we’re going to start with lambda functions
and yield return, which are implemented using the same techniques as async/await.
By starting with simpler compiler features, we can learn the concepts behind async/
await without having to deal with the complexities of asynchronous programming
and multithreading. The next chapter will show how everything translates directly to
async/await.

Now let’s see how the C# compiler adds advanced features not supported by the
underlying .NET runtime, starting with lambda functions (note that the C# lambda
functions have nothing to do with the Amazon AWS Lambda service).

2.1	 Lambda functions
Let’s start with one of the simpler C# features implemented by the compiler—lambda
functions. These functions are code blocks you can write inline, inside a larger method
that can be used just like a standalone method. Lambda functions allow us to take code
that, for technical reasons, needs to be a different method and write it in-line where
it is used, making the code easier to read and understand. Lambda functions can also
use local variables from the method that defined them.

However, the .NET runtime does not have in-line functions—all code in .NET must
be in the form of methods that are part of classes. So how do lambda functions work?
Let’s take a very simple example: we will create a timer, set it to call us in 1 second, and
then write the string "Elapsed" to the console.

Listing 2.1  Using lambda functions

public class LambdaDemo1
{
 private System.Timers.Timer? _timer;

 public void InitTimer()
 {
 _timer = new System.Timers.Timer(1000);
 _timer.Elapsed += (sender,args) => Console.WriteLine("Elapsed");
 _timer.Enabled = true;
 }
}

If we run this example, unsurprisingly, the program will print "Elapsed" after 1 sec-
ond. The line I want you to focus on is the one that sets the _timer.Elapsed property.
This line defines a lambda function and passes it the Elapsed property.

But I said that in .NET, all code must be in methods defined in classes, so how is this
done? The answer is that the C# compiler rewrites your lambda function as a normal
method. If you look at the compile output, it would be similar to

public class LambdaDemo2
{
 private System.Timers.Timer? _timer;

	 15Lambda functions

 private void HiddenMethodForLambda(
 object? sender, System.Timers.ElapsedEventArgs args)
 {
 Console.WriteLine("Elapsed");
 }

 public void InitTimer()
 {
 _timer = new System.Timers.Timer(1000);
 _timer.Elapsed += HiddenMethodForLambda;
 _timer.Enabled = true;
 }
}

The compiler rearranged our code and moved the body of the lambda function into a
new method. That way, we can write the code inline, and the runtime can treat it as a
normal method.

But the lambda function can also use local variables from the method that defined
them. Let’s add a variable defined in the InitTimer method and used inside the lambda
function.

Listing 2.2  Lambda function that uses local variables

public class LambdaDemo3
{
 private System.Timers.Timer? _timer;

 public void InitTimer()
 {
 int aVariable = 5;
 _timer = new System.Timers.Timer(1000);
 _timer.Elapsed += (sender,args) => Console.WriteLine(aVariable);
 _timer.Enabled = true;
 }
}

If we try to apply the same transformation on this code like in the previous example,
we will get two methods that share a local variable. This is obviously not supported and
doesn’t even make sense. How can the compiler handle that? Well, it needs something
that can hold data that can be accessed from two places, and we have such a thing in
.NET: classes. So the compiler creates a class to hold our “local” variable:

public class LambdaDemo4
{
 private System.Timers.Timer? _timer;

 private class HiddenClassForLambda
 {

 public int aVariable;

The lambda
function
becomes a
regular
method.

The new variable

The compiler creates a class
for our lambda function.

The local variable becomes
a field of the class.

16 Chapter 2  The compiler rewrites your code

 public void HiddenMethodForLambda(
 object? sender,
 System.Timers.ElapsedEventArgs args)
 {
 Console.WriteLine(aVariable);
 }
 }

 public void InitTimer()
 {
 var hiddenObject = new HiddenClassForLambda();
 hiddenObject.aVariable = 5;
 _timer = new System.Timers.Timer(1000);
 _timer.Elapsed += hiddenObject.HiddenMethodForLambda;
 _timer.Enabled = true;
 }
}

Here, the compiler created a new method and an entirely new class. The local vari-
able was moved to be a member of this class, and both the InitTimer method and
the lambda function reference this new class member. This changes the way the local
variable is accessed outside the lambda function—some operation that only used local
variables can turn into access to class member fields when you introduce a lambda. If
there are multiple lambda functions defined in the same method, they are placed in
the same class so they can share local variables. The important point is that there is no
magic here—everything the compiler adds to the .NET runtime is done by just writing
code that we can write ourselves because we have basically the same access to the run-
time’s functionality as the compiler.

Now that we’ve seen the lambda function transformation, let’s take a look at some-
thing a bit more complicated.

2.2	 Yield return
The yield return feature uses the same tricks we’ve seen in the lambda function
example to do even more advanced stuff. It’s also somewhat similar to async/await,
but without the complexities of multithreading and asynchronous code, so it’s a good
way to learn the fundamentals of async/await.

What is yield return? It basically lets you write functions that generate a sequence
of values you can use in foreach loops directly without using a collection such as a list
or an array. Each value can be used without waiting for the entire sequence to be gener-
ated. Let’s write something extremely simple—a method that returns a collection with
two items, the numbers 1 and 2. The following listing shows what it looks like without
yield return.

Listing 2.3  Using a list

private IEnumerable<int> NoYieldDemo()
{
 var result = new List<int>();

The lambda function
becomes a method
inside that class.

	 17Yield return

 result.Add(1);
 result.Add(2);
 return result;
}

public void UseNoYieldDemo()
{
 foreach(var current in NoYieldDemo())
 {
 Console.WriteLine($"Got {current}");
 }
}

Unsurprisingly, this code will output two lines, Got 1 and Got 2. The following listing
shows the same functionality with yield return.

Listing 2.4  Using yield return

private IEnumerable<int> YieldDemo()
{
 yield return 1;
 yield return 2;
}

public void UseYieldDemo()
{
 foreach(var current in YieldDemo())
 {
 Console.WriteLine($"Got {current}");
 }
}

The code looks very similar, and the results are the same. So what is the big difference? In
the first example, all the values were generated first and then used, while in the second
example, each value was generated just when it was needed, as illustrated in figure 2.1.

In the non-yield return version, the code ran normally. The NoYieldDemo method
started, did some stuff, and then returned. However, the YieldDemo method behaved
differently—it suspended at startup, and then, every time a value was needed, it
resumed, ran the minimal amount of code to provide the next value (until the next
yield return), and suspended itself again. But .NET doesn’t have a way to suspend and
resume code. What kind of sorcery is that?

Obviously, there is no sorcery, as magic does not exist in computer science. Just
like in the case of the lambda function examples we’ve seen before, the compiler just
rewrote our code.

In computer science, code that can be suspended, resumed, and potentially return
multiple values is called a coroutine. In C#, it is called iterator methods in relation to yield
return and async methods in relation to async/await. This book uses the C# terminology.
The IEnumerable<T> interface that I used as the return type for the YieldDemo method
is the most basic interface for anything that can be treated as collections or sequences

18 Chapter 2  The compiler rewrites your code

of items (including everything you can use foreach to iterate over). Every generic
collection in .NET implements this interface (older collections classes, from before
generics were introduced in .NET 2.0, use the nongeneric IEnumerable interface
instead). This interface has just one method that returns an IEnumerator<T>, and this
enumerator does all the work. An enumerator can do two things: return the current
value and move to the next one.

The IEnumerator<T> interface is important because it lets us (and the compiler)
write code that handles a sequence of items without knowing anything about that
sequence. Every collection in .NET implements IEnumerable<T>, so constructs that
deal with sequences (like the foreach loop) don’t need to know how to work with
every type of collection—they just need to know how to work with IEnumerable<T>.
The inverse is also true—everything that implements IEnumerable<T> is automatically
a sequence of items that can be used with foreach loops and all the other relevant parts
of .NET and C#.

Just like in the lambda example, the compiler rewrote the YieldDemo method into
a class, but this time, a class that implements IEnumerator<int>, so the foreach loop
knows what to do with it. Let’s rewrite the code ourselves to get the same result.

To begin, YieldDemo returned an IEnumerable<int>, so obviously, we have a class
that implements this interface, so it can be returned from YieldDemo. Like I said before,
the only thing the IEnumerable<int> does is provide an IEnumerator<int> (for

In the NoYieldDemo
method

In the
UseNoYieldDemo
method

In the YieldDemo
method

In the
UseYieldDemo
method

With yield return

Generate value 1.

Use value 1.

Generate value 2.

Use value 2.

Each value is generated
as needed and used
immediately.

Generate value 1.

Without yield return

Generate value 2.

Use value 1.

Use value 2.

First, all the values are generated
into a list. Later, the values are read
one by one from the list and used.

Figure 2.1  Using a collection versus using yield return

	 19Yield return

historical reasons, to be compatible with code written before .NET 2.0, in addition to
IEnumerator<int>, we also need to provide a nongeneric IEnumerator, and we will use
the same class for both):

public class YieldDemo_Enumerable : IEnumerable<int>
{
 public IEnumerator<int> GetEnumerator()
 {
 return new YieldDemo_Enumerator();
 }
 IEnumerator IEnumerable.GetEnumerator()
 {
 return new YieldDemo_Enumerator();
 }
}

Now we need to write our IEnumerator<int> that will do all the work:

public class YieldDemo_Enumerator : IEnumerator<int>
{

We need a Current property to hold the current value:

 public int Current { get; private set; }

Now comes the important part. Here, we divide our original code into chunks, break-
ing it just after each yield return, and replace the yield return with Current =:

 private void Step0()
 {
 Current = 1;
 }
 private void Step1()
 {
 Current = 2;
 }

The next part is the MoveNext method. This method runs the correct chunk from the
previous paragraph to update the Current property. It uses the _step field to remem-
ber which step to run, and when we run out of steps, it returns false to indicate we are
done (if you have a computer science background, you may recognize this as a simple
implementation of a finite state machine):

 private int _step = 0;
 public bool MoveNext()
 {
 switch(_step)
 {
 case 0:
 Step0();

Our
IEnumerable<int>

Returns an
IEnumerator<int>

A variable to keep track
of where we are

20 Chapter 2  The compiler rewrites your code

 ++_step;
 break;
 case 1:
 Step1();
 ++_step;
 break;
 case 2:
 return false;
 }
 return true;
 }

Now there’s some necessary technical stuff not relevant to this example:

 object IEnumerator.Current => Current;
 public void Dispose() { }
 public void Reset() { }
}

And finally, wrap the classes we generated in a method so we can call it:

public IEnumerable<int> YieldDemo()
{
 return new YieldDemo_Enumerable();
}

The actual compiler-generated code is longer and more complicated, mostly because
I completely ignored all the possible error conditions. However, conceptually, this is
what the compiler does. The compiler rewrote our code into chunks and called each
chunk in turn when needed, giving us an illusion of code that suspends and resumes.

For the yield return feature to work, we need

¡	The code transformation that divided our code into chunks and simulated a sin-
gle method that can be suspended and resumed

¡	A standard representation for anything collection-like (IEnumerable<T>) so that
everyone can use the results of this transformation

That brings us directly to async/await and the Task class in the next chapter.

Summary

¡	The C# compiler will rearrange and rewrite your code to add features that do not
exist in .NET.

¡	For lambda functions, the compiler moves code into a new method and shared
data into a new class.

¡	For yield return, the compiler also divides your code into chunks and wraps
them in a class that runs the correct chunk at the correct time to simulate a func-
tion that can be suspended and resumed.

We’re done; return false.

21

3The async and
await keywords

This chapter covers

¡	Using Task and Task<T> to check whether an 	
	 operation has completed
¡	Using Task and Task<T> to notify your code when 	
	 the operation has completed
¡	Using Task and Task<T> in synchronous code
¡	How async/await works

In the previous chapter, we saw how the compiler can transform our code to add
language features. In this chapter, we’ll learn how it applies to async/await.

async/await is a feature that lets us write asynchronous code as if it were normal
synchronous code. With asynchronous programming, when we perform an opera-
tion that would normally make the CPU wait (usually for data to arrive from some
device—for example, reading a file), instead of waiting, we just do something else.
Making asynchronous code look like normal code is kind of a big deal because tra-
ditionally, you had to divide each sequence of operations into small parts (breaking
at each asynchronous operation) and call the right part at the right time. Unsurpris-
ingly, this makes the code confusing to write.

22 Chapter 3  The async and await keywords

3.1	 Asynchronous code complexity

To demonstrate this, I placed figures 1.1 and 1.4 side by side (figure 3.1).

Read file 1
(hard drive)

Time

Processing

Read file
(waiting)

Processing

Web request received
(not our code)

Send response to
browser (not our code).

Logical flow Running the flow asynchronously
(three concurrent executions)

First processing for
request 1

Second processing
for request 1

Multiple web requests
received (not our code)

First processing for
request 2

First processing for
request 3

Second processing
for request 2

Second processing
for request 3

Ask hard drive to read file 1.

Read file 2
(hard drive)

Send response to
browser (not our code).

Read file 3
(hard drive)

Ask hard drive to read file 2.

Ask hard drive to read file 3.

Ask network to send response 1.

Ask network to send response 2.

Ask network to send response 3.

Send response to
browser (not our code).

Send response to
browser (not our code).

Figure 3.1  Logical flow versus code running asynchronously

Clearly, the left side describing the logical flow is simple, linear, and easy to under-

stand, while the right side that describes how the asynchronous version is running is

none of those things (it’s also very difficult to debug).

Traditionally, asynchronous programming requires us to design and write our code

for the right diagram, as well as divide our code into chunks that do not represent the

	 23Introducing Task and Task<T>

logical flow of the code. Also, we need code to manage the whole mess and decide what
to run when.

The async/await feature lets us write code that describes the logical flow, and the
compiler will transform it to something that can run asynchronously automatically—it
lets us write our code as shown on the left side of the diagram and have it run like the
right side.

Let’s illustrate this through a simple example—a method that reads the image width
(in pixels) of a BMP image file. I’ve chosen BMP because unlike more modern image
file formats, all the data in the BMP file is at a fixed location, which makes it easy to
extract. We’ll read the image width in two steps:

1	 First, we check whether the file is a BMP image file at all. We do that by looking at
the beginning of the file: BMP image files start with “BM.”

2	 We will then jump to the eighteenth byte in the file where the width is stored as a
32-bit (4 bytes) integer.

Our method will return the image width in pixels or throw an exception if the file is
not a BMP image and if there are other errors. Because we haven’t talked about how to
write asynchronous code yet, the first version of this example will be simple, old-style,
synchronous code.

Listing 3.1  Reading BMP width, non-asynchronous version

int GetBitmapWidth(string path)
{
 using (var file = new FileStream(path, FileMode.Open, FileAccess.Read))
 {
 var fileId = new byte[2];
 var read = file.Read(fileId, 0, 2);
 if (read != 2 || fileId[0] != 'B' || fileId[1] != 'M')
 throw new Exception("Not a BMP file");

 file.Seek(18, SeekOrigin.Begin);
 var widthBuffer = new byte[4];
 read = file.Read(widthBuffer, 0, 4);
 if(read != 4) throw new Exception("Not a BMP file");
 return BitConverter.ToInt32(widthBuffer, 0);
 }
}

As you can see, the code is straightforward. We read the first two bytes and check whether
their value is “BM.” Next, we skip to the eighteenth byte and read the image width.

3.2	 Introducing Task and Task<T>
Now let’s make this code asynchronous. We have two excellent reasons for doing so:

¡	The first and most important reason is that this is a book about asynchronous
programming.

The file should
start with
“BM.”

Reads the width
from byte 18

24 Chapter 3  The async and await keywords

¡	The second reason is that the main thing our code does is read a file, and read-
ing a file is a blocking operation that will make our thread wait for data to arrive
from the hard disk. That means we can improve efficiency by using our thread
to do other stuff while waiting instead of making the operating system switch to
another thread (or another process entirely).

The main thing our method does is read a file using the Stream.Read method, and
luckily, there’s an asynchronous version of the Stream.Read method called Stream
.ReadAsync. Let’s take a look at the difference in the method signature between those
two methods:

public int Read(byte[] buffer, int offset, int count);

public Task<int> ReadAsync(byte[] buffer, int offset, int count,
 CancellationToken cancellationToken);

We can see the following two differences in the method signature:

¡	While Read returns an int, ReadAsync returns Task<int>. The Task and Task<T>
classes are an important part of modern asynchronous programming in C#, and
we will explore their usage here.

¡	ReadAsync also accepts a CancellationToken, but we’re going to ignore it for
now because there’s an entire chapter about it later in this book.

Earlier in this chapter, I wrote that for asynchronous code, we need to divide our code
into parts, and we also need a system to manage the execution of those parts. Task is the
class that we use to interact with that system. A Task does multiple things: it represents
an ongoing asynchronous operation, lets us schedule code to run when an asynchro-
nous operation ends (we’ll talk about these two in this chapter), and lets us create and
compose asynchronous operations (we’ll talk about those later in this book).

Chapter 2 introduced us to IEnumerable<T> and how it enables yield return. The
Task and Task<T> classes are the IEnumerable<T> of async programming. They are a
standard way to represent the async stuff, so everyone knows how to work with it.

The name of the Task class is confusing; the word “task” implies there’s an operation,
something that runs, but this is not the only meaning of Task. A Task represents an
event that may happen in the future, while Task<T> represents a value that may be avail-
able in the future. Those events and values may or may not be the results of something
we will describe using the English word task. In computer science, those concepts are
often called future, promise, or deferred value, but in this book, we’ll refer to them using
the .NET/C# term Task.

It’s important to note that while it is common to create a Task or a Task<T> for code
we run in the background (as we’ll see in the next chapter), some classes and meth-
ods in .NET use the word task to refer to this code or to manage context information
related to it. The Task or Task<T> objects themselves do not let you manage the back-
ground operation and do not carry context related to it. A Task just lets you know when

	 25Introducing Task and Task<T>

that background operation finishes running (the Task object represents the event of
the background operation ending), and Task<T> adds the ability to get the result of
the background operation (Task<T> represents the value produced by the background
operation). A Task is not a thread or a background operation, but it is sometimes used
to convey the results of a background operation.

In .NET/C# terminology, we say that the task is completed when the event repre-
sented by a Task happens or the value represented by a Task<T> is available. The Task is
also considered completed if it is marked as canceled or faulted.

For example, when we call Task.Delay(1000), we get an object that represents an
event that will happen in 1 second but has no corresponding thread or activity. In the same
way, if we call File.ReadAllBytesAsync, and, for example, there is no thread reading in
the background, the system asks the disk controller (a different hardware device than
the CPU) to load data and calls us when it’s done, so we get back a Task<byte[]> object
that represents the data that will be received from the disk in the future.

The Read method we used in our example fills the buffer we gave it and returns
the number of bytes that were successfully read. For compatibility and performance
reasons, the ReadAsync method works in the same way, except it returns a Task<int>
instead of an int. The returned Task<int> represents the number of bytes successfully
read that will be available after the operation completes. Note that we should not touch
the buffer we passed ReadAsync until the operation is complete.

So a Task or Task<T> object represents an event or a value that may be available in
the future. When we want to know whether this event happened or the value is available
yet, there are two asynchronous approaches supported by Task and Task<T>—to use
a travel metaphor, there are the “Are we there yet” model and the “Wake me up when
we arrive” model. Furthermore, there is also the synchronous approach if you can’t or
don’t want to use asynchronous programming.

3.2.1	 Are we there yet?

In the “Are we there yet” model, you are responsible for asking the Task whether
it has completed yet, usually in a loop that does other things between those checks
(this is called polling), which is done by reading the IsCompleted property. Note that
IsCompleted is true even if the task has errored out or was canceled.

Task also has a Status property we can use. The task has completed if Status is Ran-
ToCompletion, Canceled, or Faulted. Using the IsCompleted property is better than
using the Status property because checking one condition as opposed to three is more
concise and less error-prone (we will talk about canceled and faulted tasks later in this
book).

You should not check IsCompleted or Status in a loop unless you are doing other
work between the checks. If most of what you do is just waiting for the task to complete,
you are not only using up a thread for waiting, completely negating the advantages of
asynchronous techniques, but you are also wasting CPU cycles, thus wasting resources
that other code on the computer (including the work you are waiting for) could utilize
for useful stuff.

26 Chapter 3  The async and await keywords

This is just like asking “Are we there yet?” in a car. If you do it too often, you are
interfering with what everyone else in the car is doing and might even arrive later if you
annoy the driver.

Here’s an example of using IsCompleted in a loop to check whether the task has
completed:

var readCompleted = File.ReadAllBytesAsync("example.bin");
while(!readCompleted.IsCompleted)
{
 UpdateCounter();
}
var bytes = readCompleted.Result;
// do something with bytes

In this example, the program needs to continuously update a counter while waiting for
the data to arrive from the disk. So it updates the counter and checks whether the read
has completed in a loop. When the data is available, it exits the loop to process the data
it just received.

Most of the time, we don’t have anything useful to do while waiting for IsCompleted
to become true, so this model is rarely used. In most cases (and most of this book), we
will let the .NET runtime schedule and run our tasks and will not use the “Are we there
yet” model. This is only beneficial when we have something to do while waiting and
don’t want to return and release the thread for some reason (we will see an example
with UI threads later in this book).

3.2.2	 Wake me up when we get there

In the “Wake me up when we get there” model, you pass a callback method to the task,
and it will call you when it’s complete (or errored out or canceled). This is done by
passing the callback to the ContinueWith method.

The task is passed as a parameter to the callback, so you can use it to check whether
the operation completed successfully and, in the case of Task<T>, read the result value:

var readCompleted = File.ReadAllBytesAsync("example.bin");
readCompleted.ContinueWith(t =>
 {
 if(t.IsCompletedSuccessfully)
 {
 byte[] bytes = t.Result;
 // do something with bytes
 }
 });

Unlike the previous model, this fits the needs of our example code very well. If we take
a look at just the code immediately around the first Read call, it changes from

var fileId = new byte[2];
var read = file.Read(fileId, 0, 2);

	 27Introducing Task and Task<T>

if (read != 2 || fileId[0] != 'B' || fileId[1] != 'M')
…

to

var fileId = new byte[2];
var read = file.ReadAsync(fileId, 0, 2, CancellationToken.None).
 ContinueWith(t=>
 {
 if (t.Result != 2 || fileId[0] != 'B' || fileId[1] != 'M')
…

In this case, we only replaced Read with ReadAsync and passed all the code that was
after the Read call into ContinueWith as a lambda function (doing some more required
changes if we use using or throw, but fortunately, it doesn’t affect the three lines of
code in this snippet—we’ll talk about it later in this chapter).

Technically speaking, you can make multiple asynchronous calls by chaining
ContinueWith calls with lambdas, as shown in the example, although this tends to be
unreadable and creates extremely long lines of code. For example, reading 3 bytes from
a file 1 byte at a time will look like this:

f.ReadAsync(buffer, 0, 1, CancellationToken.None).
 ContinueWith(t1 =>
 {
 f.ReadAsync(buffer, 1, 1, CancellationToken.None).
 ContinueWith(t1 =>
 {
 f.ReadAsync(buffer, 2, 1, CancellationToken.None).
 ContinueWith(t1 =>
 {
 // finished readin 3 bytes!
 });
 });
 });

The code isn’t very readable, and each ContinueWith pushes our code farther to the
right. If I wanted to change this example to read 4 or more bytes in the same way, it
wouldn’t fit within the width of the book’s page. (Spoiler: Later in this chapter, we’ll
see how async/await solves this problem.)

3.2.3	 The synchronous option

There is also the possibility that you will want to wait for a task in a non-asynchronous
way. For example, if you write old fashion synchronous code that uses an API that only
has a Task-based asynchronous method, the best way is to call the Task.Wait method or
read the Task<T>.Result property. The Wait method and Result property will block
the current thread until the task is complete and will throw an exception if the task
is canceled or errored out, making it behave like synchronous code. Note that using
the Wait method or the Result property to wait for a task to complete is inefficient
and negates the advantages of using asynchronous programming in the first place. It

28 Chapter 3  The async and await keywords

also might cause deadlocks in some scenarios (deadlocks make your program become
stuck, and we will talk about them extensively later in the book):

var readCompleted = File.ReadAllBytesAsync("example.bin");
var bytes = readCompleted.Result;
// do something with bytes

Generally, you would only use this approach when you had no other choice (mostly
when integrating asynchronous and non-asynchronous code).

3.2.4	 After the task has completed

After the task is completed, you need to check whether it completed successfully or
not; both Task and Task<T> have the IsFaulted, IsCanceled, and IsCompleted
Successfully properties that do exactly what their name suggests. They can be used
after the task is complete to check the status of the task. (It’s okay to call them before
the task completes; in that case, they just return false.) If IsFaulted is true, you can
read the Exception property to see what went wrong.

In case the task is faulted, the easiest way to throw the error stored in a task so you
can handle it with a normal try-catch block is to call Wait. Calling Wait after the task has
completed is safe and will not block the thread (because the event it is waiting for has
already happened). It will just return immediately if the task completed successfully or
throw an exception if the task was canceled or has errored out. Because of this behavior,
you don’t even have to check that the task is in a faulted or canceled state (it will throw
an exception if the task was completed unsuccessfully).

So if you want to check whether the task has errored out and check the exception
object without throwing, you would use

if(task.IsFaulted)
 HandleError(task.Exception);

However, if you want to check whether the task has errored out and throw the excep-
tion only after the task has completed, you could just use

task.Wait();

This works because, like we said, calling Task.Wait when the task has already com-
pleted will either do nothing and return immediately or throw an exception. Note that
the last two code snippets behave differently if the task was canceled (there is an entire
chapter about cancellation later in the book).

The exception in the Task.Exception property (or the exception thrown by the
Wait method or Result property if the task is in a faulted state) will be an Aggregate-
Exception. The AggregateException will contain the original exception in its Inner-
Exceptions (plural) property, which should not be confused with the InnerException
(singular) property that is inherited from Exception and is not used in this case.

This will wait until the
read has completed.

	 29How does async/await work?

AggregateException is used here to support situations where the task represents the
combination of several operations.

If you know there is just one exception, and you want to access it and not the
AggregateException, you use something like

If(task.IsFaulted)
 HandleError(task.Exception.InnerExceptions[0]);

Task<T> (but not Task) also has a Result property that is used to get the value stored
in the task. Typically, we will only read the Result property after the task has com-
pleted (IsCompleted is true or ContinueWith is called). If we try to read the Result
property before the task is completed, the Result property will block and wait until the
task is completed. This is equivalent to calling Wait and has all the same inefficiencies
and dangers we talked about. If the task is in an error or canceled state, then reading
Result will throw an exception.

To summarize, when using tasks without async/await, you can use the IsCompleted
or Status properties to ask “Are we there yet?” And just like in a car, you don’t want to
ask too often. You can use ContinueWith to make the task call you when it completes
(“Wake me up when we arrive”). Finally, you can call Wait or Result to make the task
synchronous, but that’s inefficient and dangerous because it will block the thread until
the task is complete (calling Wait or Result after the task has completed is perfectly effi-
cient and safe because the result is already available, and there’s no need for blocking).

Now that we understand how Task and Task<T> work, let’s see how async/await
makes it easier to use.

3.3	 How does async/await work?
We’ve already seen that Task and Task<T> are all we need to write asynchronous code,
but writing any nontrivial code using ContinueWith and lambdas (like in the “Wake me
up when we get there” example) gets tedious and unreadable pretty quickly. Let’s copy
just the part that reads the file from our “get BMP width” example and convert it to use
ReadAsync and ContinueWith.

We will do the simplest mechanical conversion possible. Every time there is a call to
Read, we will replace it with a call to ReadAsync and just pass the rest of the code as a
lambda function to ContinueWith:

file.ReadAsync(fileId, 0, 2,CancellationToken.None).
 ContinueWith(firstReadTask =>
 {
 int read = firstReadTask.Result;
 if (read != 2 || fileId[0] != 'B' || fileId[1] != 'M')
 {
 // get error to caller somehow
 }
 file.Seek(18, SeekOrigin.Begin);
 var widthBuffer = new byte[4];
 file.ReadAsync(widthBuffer, 0, 4, CancellationToken.None).

30 Chapter 3  The async and await keywords

 ContinueWith(secondReadTask =>
 {
 read = secondReadTask.Result;
 if(read != 4) throw new Exception("Not a BMP file");
 var result = BitConverter.ToInt32(widthBuffer, 0);
 // get result back to our caller somehow
 });
 });

What a mess! What was a simple and readable method looks awful now. It is less read-
able because the code is divided by the async calls and no longer follows the logic of our
algorithm. And worst of all, our conversion isn’t even correct! The original code had
a using statement that disposed of the file on completion and on exception, so to get
the same behavior, we have to wrap everything in try-catch blocks and do it ourselves (I
didn’t add those to the code because it’s difficult to read even without it). We also need
to get the exception and results to the caller, and because the lambdas are running asyn-
chronously, we can no longer use return and throw to communicate with the caller of
the method. Fortunately, we have async/await that takes care of this for us.

To rewrite our example with async/await and ReadAsync, we need to make the fol-
lowing changes:

¡	First, we start by marking our method with the async keyword, and as we’ll see a
bit later, this by itself does nothing.

¡	We can no longer return an int because as an asynchronous method, our
method will return immediately and complete its work later. It’s not possible to
return an int because we don’t know the correct value at the time the method
returns! Fortunately, we do have a way to return “an int that will be available in
the future”—Task<int>.

¡	And finally, insert the await keyword before every ReadAsync call. The await
keyword tells the compiler that the code needs to be suspended at this point and
resumed when whatever async operation you are waiting for completes.

The following listing shows our method with async/await. Changes from the original
non-async version are in bold.

Listing 3.2  Reading the BMP width (async version)

public async Task<int> GetBitmapWidth(string path)
{
 using (var file = new FileStream(path, FileMode.Open, FileAccess.Read))
 {
 var fileId = new byte[2];
 var read = await file.ReadAsync(fileId, 0, 2);
 if (read != 2 || fileId[0] != 'B' || fileId[1] != 'M')
 throw new Exception("Not a BMP file");

 file.Seek(18, SeekOrigin.Begin);
 var widthBuffer = new byte[4];
 read = await file.ReadAsync(widthBuffer, 0, 4);

	 31How does async/await work?

 if(read != 4) throw new Exception("Not a BMP file");
 return BitConverter.ToInt32(widthBuffer, 0);
 }
}

It looks basically the same as the original non-async version, only with the async and
await keywords added, but it’s actually very different. Let’s see what the code really
does.

Note that the code in listing 3.3 describes what the compiler does conceptually. The
actual code generated by the compiler is very different and much more complex. I’m
using this simplified version because it is easier to understand while giving a good men-
tal model of what the compiler does. At the end of this section, I’ll talk about the major
differences between my version and the actual compiler code.

asynch/await uses the “Wake me up when we arrive” model. It breaks the code into
chunks (like the yield return feature from the previous chapter) and uses the task’s
ContinueWith method to run the chunks at the correct time.

Let’s see how the compiler rewrites our code. But before exploring what the
compiler does, we’ll make just one tiny change: in the async/await example, we
returned Task<int>, but we didn’t talk about how you can create a Task yet (don’t
worry, there is a whole chapter about it later). Instead, we’re going to pass two callbacks
to our method: setResult, which will be called when our code completes successfully,
and setException, which will be called in case we get an exception.

What the compiler does is separate the code after an await into a different method
(like we did with yield return in the previous chapter) and pass it to the Task’s
ContinueWith method. To be able to share variables between the methods, we will move
the local variables into a class like we did with lambda functions.

Listing 3.3  Reading the BMP width (async with ContinueWith only)

public void GetBitmapWidth(string path,
 Action<int> setResult, Action<Exception> setException)
{
 var data = new ClassForGetBitmapWidth();
 data.setResult = setResult;
 data.setException = setException;
 data.file = new FileStream(path, FileMode.Open, FileAccess.Read);
 try
 {
 data.fileId = new byte[2];
 var read = data.file.ReadAsync(data.fileId, 0, 2).
 ContinueWith(data.GetBitmapWidthStep2);
 }
 catch(Exception ex)
 {
 data.file.Dispose();
 setException(ex);
 }
}

Code from listing 3.2

Code added to simulate
the using statement

32 Chapter 3  The async and await keywords

This took care of the code before the first await. Note that our changes didn’t make
this part run asynchronously at all. Everything before the first await runs like normal
non-async code. And if you have a method marked with the async keyword without an
await, then the entire method will run as if it weren’t an async method (except that
the return value will be wrapped in a Task).

We had to replace the using statement with try-catch to make sure the file is disposed
properly on exception (not try-finally because, if this part of the code succeeds, we need
to keep the file open until the next part finishes).

Now for the class that we need to store the “local” variables, we use

private class ClassForGetBitmapWidth
{
 public Stream file;
 public byte[] fileId;
 public byte[] widthBuffer;
 public Action<int> setResult;
 public Action<Exception> setException;

In this class, the code between the first and second await is

 public void GetBitmapWidthStep2(Task<int> task)
 {
 try
 {
 var read = task.Result;
 if (read != 2 || fileId[0] != 'B' || fileId[1] != 'M')
 throw new Exception("Not a BMP file");

 file.Seek(18, SeekOrigin.Begin);
 widthBuffer = new byte[4];
 file.ReadAsync(widthBuffer, 0, 4).
 ContinueWith(GetBitmapWidthStep3);
 }
 catch(Exception ex)
 {
 file.Dispose();
 setException(ex);
 }
 }

It looks like we didn’t check the result of the previous operation. We didn’t read the
Task IsCompletedSuccessfully property or the Task.Status property. Thus, we don’t
know if there was an error. However, reading Task.Result will throw an exception if
the task was completed unsuccessfully, so writing code to explicitly check for errors is
not required. Also note that because this was called from ContinueWith, we know the
task has already completed, and we are guaranteed the task is completed and reading
Result is a nice, safe, and fast nonblocking operation.

Now for the part after the last await, we have

Code from
listing 3.2

Code added to simulate
the using statement

	 33async void methods

 public void GetBitmapWidthStep3(Task<int> task)
 {
 try
 {
 var read = task.Result;
 if(read != 4) throw new Exception("Not a BMP file");
 file.Dispose();
 var result = BitConverter.ToInt32(widthBuffer, 0);
 setResult(result);
 }
 catch(Exception ex)
 {
 file.Dispose();
 setException(ex);
 }
 }
}

Just like we’ve seen with yield return in chapter 2, the compiler divided our function
into chunks and added code to call them at the correct time. We’ve also seen that the
correct time for the first chunk, before the first await, is when the method was called.
Marking the method as async does not make it asynchronous. It’s just a compiler flag
to tell the compiler to look for await keywords and divide the method into chunks.
In the same way, await does not wait—it actually ends the current chunk and returns
control to the caller.

As promised, here are the major differences between the code we just talked about
and the code the compiler really generates:

¡	The compiler does not divide your code into different methods. It builds a single
state machine method that keeps track of the current position using a variable
and uses a big switch statement to run the correct piece of code.

¡	The compiler does not use ContinueWith; instead, it uses an internal object
called an awaiter. I’ve chosen to use ContinueWith because it’s conceptually simi-
lar, and unless you are writing a compiler or a replacement of the .NET asynchro-
nous framework, you don’t need to know about it.

¡	await actually does much more than ContinueWith. ContinueWith just makes
the callback run when the Task is complete, while the former has other useful
features that we will talk about later in this book.

3.4	 async void methods
Let’s say we are writing a WinForms app, and we want to add a feature that copies all
the text from one file into another file when the user clicks a button. Let’s also say we
know those are small files, so we can just load the entire contents into memory. The
code for that feature will look something like the one in the following listing.

Code from
listing 3.2

Instead of a return statement

Code added to simulate
the using statement

34 Chapter 3  The async and await keywords

Listing 3.4  async event handler

private async void Button1_Click(object sender, EventArgs ea)
{
 var text = await File.ReadAllTextAsync("source.txt");
 await File.WriteAllTextAsync("dest.txt", text);
}

This code just asynchronously loads all the content of a file into a variable and then
asynchronously writes the contents of the variable into another file. Now let’s use what
we’ve learned in this chapter and transform it like we transformed the GetBitmapWidth
method in listing 3.3, except that this time, we must keep the event handler signature.
We can’t add the setResult and setException parameters (this is analogous to how in
the async version we had to return void and couldn’t return Task).

Listing 3.5  Compiler transformation for async event handler

private void Button1_Click(object sender, EventArgs ea)
{
 var data = new ClassForButton1_Click();
 File.ReadAllTextAsync("source.txt").
 ContinueWith(data.Button1_ClickStep2);
}

private class ClassForButton1_Click
{
 public void Button1_ClickStep2(Task<string> task)
 {
 try
 {
 var text = task.Result;
 File.WriteAllTextAsync("dest.txt", text).
 ContinueWith(Button1_ClickStep3);
 }
 catch
 {
 // ?
 }
 }

 public void Button1_ClickStep3(Task task)
 {
 if(task.IsFaulted)
 {
 // ?
 }
 else
 {
 // ?
 }
 }

}

We have no way to notify
that we had an exception.

We have no way to notify that
we had an exception (again).

We have no way to notify
that we are done.

	 35ValueTask and ValueTask<T>

Because this method is simple, the transformation was also simple (but maybe just a bit
tedious). We didn’t even have to move any local variables into the class. However, we
do have a problem: after we finish copying the data, we don’t have any way to notify the
rest of the program that we are done. Even worse, if there is any error, we also have no
way to notify anyone. We have the three question mark comments in the code, and we
don’t know what to write there.

This is exactly what happens with async methods with a void return type. Because
there is no Task, the caller of the method has no way of knowing when the method
finished running (all the ways we talked about—await, Wait, IsCompleted, and even
ContinueWith—require a Task object). This is not a problem in this case because event
handlers are usually “fire-and-forget” operations where the caller doesn’t care what the
handler does or when it finishes (as long as it returns control to the caller quickly, which
our code does).

There is also no way to report the exception to the caller (like in the success case,
there’s no access to the Task.Exception property or any other way to get to the excep-
tion because there is no Task), but unlike the success case, this is a real problem. Some
code is going to get an exception it didn’t expect and most likely crash. We’ll talk about
all the details in the chapter about exceptions, but the solution is just to not let async
void methods throw exceptions—if you write an async void method, you need to catch
all exceptions and handle them yourself.

So if this feature is so problematic, why do we have async void methods to begin
with? The reason for async void is event handlers. By convention, just like in our exam-
ple, event handlers always have a void return type, so if async methods didn’t support
void, we couldn’t use async/await in event handlers.

This brings us to the official guidance about async void methods: you should only
use async void for event handlers and avoid throwing exceptions from async void
methods. So the correct way to write the event handler from listing 3.4 is as follows.

Listing 3.6  async event handler with error handling

private async void Button1_Click(object sender, EventArgs ea)
{
 try
 {
 var text = await File.ReadAllTextAsync("source.txt");
 await File.WriteAllTextAsync("dest.txt", text);
 }
 catch(Exception ex)
 {
 // Do something with the exception
 }
}

3.5	 ValueTask and ValueTask<T>
Certain methods are sometimes (but not always) asynchronous. For example, let’s say
we have a method that performs an asynchronous operation but only if it can’t satisfy
the request from a cache:

36 Chapter 3  The async and await keywords

public async Task<int> GetValue(string request)
{
 if(_cache.TryGetValue(request, out var fromCache))
 {
 return fromCache;
 }
 int newValue = await GetValueFromServer(request);
 return newValue;
}

Note that _cache is not a Dictionary. Dictionary is not thread safe and is unsuitable
to be used with async methods. We’ll talk about thread-safe data structures that can be
used to build a thread-safe cache in chapter 13.

The GetValue method first checks whether the requested value is in the cache. If so,
it will return the value before the first time it uses await. As we’ve seen in this chapter,
the code before the first await runs non-asynchronously, so if the value is in the cache,
it will be returned immediately, making the Task<int> returned by the method just a
very complicated wrapper for an int.

Allocating the entire Task<int> object when it’s not required is obviously wasteful,
and it would have been better if we could return an int if the value could be returned
immediately and only return the full Task when we need to perform an asynchronous
operation. This is what ValueTask<T> is. ValueTask<T> is a struct that contains the
value directly if the value is available immediately and a reference to a Task<T> other-
wise. The nongeneric ValueTask is the same, except it only contains a flag saying the
operation has completed and not the value.

You can await a ValueTask or a ValueTask<T>, just like Task and Task<T>. They
also have most of the properties of Task and Task<T>. If you want to use a feature of
Task that is not available in ValueTask (for example, Wait), you can use the ValueTask
.AsTask() method to get the Task stored inside a ValueTask.

ValueTask and ValueTask<T> are slightly less efficient than Task and Task<T> if
there is an asynchronous operation, but much more efficient if the result was available
immediately. It is recommended to return a ValueTask in methods that usually return
a value without performing an asynchronous operation, especially if those methods are
called often.

3.6	 What about multithreading?
In chapter 1, I said that asynchronous programming and multithreading work very
well together. Yet in this entire chapter, we didn’t talk about multithreading at all. Also,
I said the callback you pass to ContinueWith will run later, but we completely ignored
how and where the callback will run. This leads us to the next chapter, which covers
multithreading.

Summary

¡	Task represents an event that may happen in the future.

¡	Task<T> represents a value that may be available in the future.

Returns value from
cache if possible

Otherwise performs
async operation

	 37Summary

¡	When the event happens or the value is available, we say that the Task or Task<T>
has completed.

¡	The IsCompleted or Status properties can be used to test whether the task has
completed.

¡	Use ContinueWith to make the task call you when it completes.

¡	You can call Wait or Result to make the task synchronous, but that’s inefficient
and dangerous.

¡	Calling Wait or Result after the task has completed is perfectly efficient and safe.

¡	async is just a compiler flag. It tells the compiler that the method needs to be
broken into chunks whenever there’s an await keyword.

¡	The async keyword does not make the code run in the background. Without
await, it does nothing (except make the compiler generate an awful lot of boil-
erplate code).

¡	The compiler breaks the method after each await and passes the next chunk to
ContinueWith (conceptually).

¡	await does not wait but ends the current chunk and returns to the caller.

¡	async methods can be void, but then there’s no way to know when the method
has finished, and you should catch and handle all exceptions inside the method.

¡	If an async method often returns a result immediately without doing anything
asynchronous, you can improve the efficiency by returning ValueTask or Value
Task<T> instead of Task or Task<T>.

38

4Multithreading basics

This chapter covers

¡	The basics of threads
¡	Starting threads
¡	Waiting for threads
¡	Accessing shared data and using locks
¡	The basics of deadlocks

Chapter 1 discussed how a system can run multiple pieces of code simultaneously—
much more than the number of CPU cores—by quickly switching between them.
This functionality is made possible by a hardware timer inside the CPU. Each time
the timer ticks, the operating system can pause the currently running code and
switch to another piece of code. If the switching is fast enough, it creates the illusion
that all threads are running simultaneously.

This chapter explores how to use threads for parallel execution and discusses key
aspects of concurrent programming. In the next chapter, we will connect these top-
ics to the async/await feature.

When a process starts, it begins with one thread that runs the Main method (along
with a few other system-controlled threads, which we will set aside for now). This

	 39Different ways to run in another thread

initial thread is referred to as the main thread. We will now look at how to utilize addi-
tional threads to allow multiple pieces of code to run simultaneously.

4.1	 Different ways to run in another thread
Now that we’ve decided we want to run code in parallel, we need to talk about how to
do it. This section covers the three most common ways to run code in another thread
in C#. We will start with the oldest and most flexible option—creating your own thread.

4.1.1	 Thread.Start

In .NET, a thread is represented by the appropriately named System.Threading
.Thread class. This class lets you inspect and control existing threads, as well as create
new ones.

To create a new thread, you first create a new Thread object, passing a callback
with the code you want to run in the new thread to the constructor. After that, you
have a chance to configure the thread before it starts running. Finally, you call Thread
.Start to start the thread. In the following listing, we are going to create and configure
a thread.

Listing 4.1  Creating a thread

public void RunInBackground()
{
 var newThread = new Thread(CodeToRunInBackgroundThread);
 newThread.IsBackground = true;
 newThread.Start();
}

private void CodeToRunInBackgroundThread()
{
 Console.WriteLine("Do stuff");
}

As you can see, this code example follows exactly the described steps:

1	 We created a thread, passing the method we want to run in that thread to the
constructor.

2	 We configured the thread, in this case by making it a background thread (we’ll
talk about background threads later in the book). This step is optional.

3	 We started the thread by calling Thread.Start.

The Thread class constructor has two versions that each accept a different delegate.
There’s the simple version we used in this example that accepts a void method with no
parameters, and there is also a parameterized version that accepts a void method that
takes one parameter of type object.

The Thread.Start method also has two corresponding versions: one that has no
parameters and one that accepts a parameter of type object. If you use the second

Creates thread
object

Configures thread

Starts running

Code to run in
new thread

40 Chapter 4  Multithreading basics

version of both, you can pass whatever object you want to your thread code by passing it
to Thread.Start.

This option lets you write a single method for threads doing slightly different things
and pass a different parameter value to each thread to differentiate between them. For
example, let’s create 100 threads and pass a different number to each.

Listing 4.2  Creating a thread with a parameter

public void RunLotsOfThreads()
{
 var threads = new Thread[100];
 for(int i=0;i<100;++i)
 {
 threads[i] = new Thread(MyThread);
 threads[i].Start(i);
 }
}
private void MyThread(object? parameter)
{
 Console.WriteLine($"Hello from thread {parameter}");
}

In this listing, we just passed our loop index to Thread.Start, and it was conveniently
provided to our MyThread method when it started running in the new thread.

Mixing it up by passing a non-parameterized method to the Thread constructor
and then using the parameterized version of Thread.Start, or vice versa, doesn’t
make much sense but is fully supported. If you use the parameterized delegate and the
non-parametrized Thread.Start, your method parameter value will be null. If you use
the non-parametrized delegate and the parameterized Thread.Start, the value will be
ignored.

The Thread class also contains a method that will wait until the thread completes its
work, called Join. Join is the standard computer science term for waiting for a thread.
I’ve found conflicting stories about the origin of this term, all of them using metaphors
that I don’t want to repeat here because they don’t work that well. We’ll just have to
accept that in this context, join means wait.

The Join method is very useful when we want to run several threads in parallel
and then, after they all finish, do something like combining the results from multiple
threads. Thread.Join will return immediately if the thread has already finished. In the
following listing, we run three threads and wait for them all to finish before notifying
the user we are done.

Listing 4.3  Waiting for threads to finish

public void RunAndWait()
{
 var threads = new Thread[3];
 for(int i=0;i<3;++i)

Passes a value
per thread

Uses that value

Runs all threads

	 41Different ways to run in another thread

 {
 threads[i] = new Thread(DoWork);
 threads[i].Start();
 }
 foreach(var current in threads)
 {
 current.Join();
 }
 Console.WriteLine("Finished");
}

private void DoWork()
{
 Console.WriteLine("Doing work");
}

Here we start three threads in one loop and then wait for them in a second loop. It’s
important that those are two separate loops because we want to start all threads and
only then wait for all of them. We don’t want to start and wait repeatedly, as that would
cause sequential execution, just with threading overhead (this problem is called syn-
chronization, and we will discuss it in chapter 7).

The second loop looks like it depends on the order of the threads in the list, but it
doesn’t. It doesn’t matter in what order we wait for the threads. If the longest-running
thread is the first, we will wait for it to complete, and then the Join calls for the other
already finished threads will return immediately. If the longest-running thread is the
last, the loop will wait for the first thread, and when it finishes, it will wait for the next
one until it gets to the last one. In both cases, the loop will wait until the longest running
of the threads finishes.

The Thread class also has other methods that let us control threads: Suspend, Resume,
and Abort. Those may seem handy at first, but they are in fact extremely dangerous,
and you should never use them. You will discover why later in the chapter.

Using the Thread class and Thread.Start is the only way to get a thread that is com-
pletely under your control, and you can do whatever you want with it without interfer-
ing with other code running in your app.

Creating and destroying threads is relatively resource intensive, and if you create
a lot of threads where each thread does just a little bit of work, your app might spend
more time managing threads than doing actual useful work.

This affects asynchronous code because even if it takes a long time to complete, it is
usually composed of many short parts. For example, the following method performs
two asynchronous operations:

private async Task SoSomethingComplicated()
{
 await DoFirstPart();
 await DoSecondPart();
}

Waits for threads
to finish

42 Chapter 4  Multithreading basics

When this method starts, it will get to the DoFirstPart call and then return control to
its caller as soon as DoFirstPart does something asynchronous (and the caller is likely
to be using await and do the same until there are no more callers and the thread is
released). When the asynchronous operation is complete, the method will resume,
requiring a thread run for just long enough to get to the DoSecondPart call and release
the thread again. Later, when DoSecondPart completes, the method will resume,
requiring a thread again. If this involved creating and destroying threads, there would
have been two thread destructions and two thread creations involved.

Short tasks have the same problem. If we spin up a thread to run just a quick, tiny cal-
culation, we can easily find ourselves wasting a significant amount of time creating and
destroying the thread relative to actually doing useful work. And that brings us to our
next topic—the thread pool.

When to use Thread.Start
Use Thread.Start for

¡	Long-running code.
¡	If you need to change the thread properties such as language and locale infor-

mation, background status, COM apartment, etc. (We’ll talk about all the thread
settings near the end of this chapter.)

Do not use Thread.Start for
¡	Asynchronous code
¡	Short tasks

4.1.2	 The thread pool

The thread pool is the solution for the thread creation and destruction overhead we
talked about. With the thread pool, the system keeps a small number of threads waiting
in the background, and whenever you have something to run, you can use one of those
pre-existing threads to run it. The system automatically manages those threads and cre-
ates new ones when needed (between a minimum and maximum number of threads
you control).

The thread pool is optimized for short-running tasks where the same thread can pick
up multiple tasks one after the other. If you use the thread pool for a long-running task,
you are taking a thread out of rotation for a long time, and when all the threads in the
pool are busy, new work must wait until one of the threads frees up.

Also, because you are “borrowing” a thread, you should not change any of its proper-
ties, since any change will affect future code that runs in that same thread (just like you
wouldn’t rearrange someone’s furniture if you’re just visiting). If you need to change
the thread properties, you must create the thread with the Thread class.

The thread pool is controlled by the appropriately named System.Threading
.ThreadPool class. To run something on the thread pool, you will use the less-
appropriately named QueueUserWorkItem method.

	 43Different ways to run in another thread

Listing 4.4  Running in the thread pool

public void RunInBackground()
{
 ThreadPool.QueueUserWorkItem(RunInPool);
}

private void RunInPool(object? state)
{
 Console.WriteLine("Do stuff");
}

The code is similar to that in listing 4.1, but we can’t change the thread configuration
(because we are borrowing an existing thread) and don’t have to manually start the
thread (because the thread is already running).

Like Thread.Start, QueueUserWorkItem also has a parametrized and a non-
parametrized version. But unlike the Thread class, the method that runs on the
thread pool always accepts an object parameter; if you use the non-parameterized
QueueUserWorkItem, the parameter will be null. Let’s rewrite the code from listing 4.2
to use the thread pool.

Listing 4.5  Running in the thread pool with a parameter

public void RunInBackground()
{
 for(int i=0;i<10;++i)
 {
 ThreadPool.QueueUserWorkItem(RunInPool,i);
 }
}

private void RunInPool(object? parameter)
{
 Console.WriteLine($"Hello from thread {parameter}");
}

The code in this example is unsurprising—it’s exactly like code from listing 4.2, except
we don’t have to start the thread manually.

Unlike the Thread class with its Join method, the thread pool does not give us a
built-in way to wait until the code we run on it ends. We will see later in this chapter how
we can build our own way to wait until the background code completes.

This chapter talks about the thread pool. There is one thread pool created for you
by the framework, and all the examples here use it. However, you can easily create your
own thread pools, but you probably shouldn’t.

The thread pool interface is old and clunky (for example, you use a method named
QueueUserWorkItem) and doesn’t work well with Tasks and async-await (because it
predates them by a decade), which is why we have Task.Run.

Queues code to run
in thread pool

Code to run

Passes a value
to the thread

The value is received in
the parameter.

44 Chapter 4  Multithreading basics

When to use ThreadPool.QueueUesrWorkItem
Use ThreadPool.QueueUesrWorkItem for

¡	Short-running tasks
Do not use ThreadPool.QueueUesrWorkItem

¡	For long-running tasks
¡	When you need to change the thread properties
¡	With Task-based asynchronous operations
¡	With async/await

4.1.3	 Task.Run

We’ve seen that the thread pool is optimized to run many short-running tasks, and we
know that asynchronous tasks are actually a sequence of short tasks, so the thread pool
is ideal for running asynchronous code, except that the QueueUserWorkItem method
doesn’t use the Task class (because it predates async/await and Task by about a
decade). This is why we have Task.Run.

The Task.Run method runs code on the thread pool, just like ThreadPool.Queue
UserWorkItem, but it has a nicer interface that works well with async/await. For the
simple scenario, it works basically the same as in the previous example.

Listing 4.6  Running in the thread pool with Task.Run

public void RunInBackground()
{
 Task.Run(RunInPool);
}

private void RunInPool()
{
 Console.WriteLine("Do stuff");
}

The code is the same as the thread pool example in listing 4.4, except ThreadPool
.QueueUserWorkItem was replaced with Task.Run. But unlike with the ThreadPool class,
Task.Run works very well with async/await (and other methods that return a Task).

Listing 4.7  Running async code with Task.Run

public void RunInBackground()
{
 Task.Run(RunInPool);
}

private async Task RunInPool()
{
 await Task.Delay(500);

Queue code to run
in thread pool

Code to run

Queues code to run
in thread pool

Code to run

	 45Different ways to run in another thread

 Console.WriteLine("Did async stuff");
}

As you can see from the code, it just works. We didn’t have to do anything special to
run an async method with Task.Run.

Also, Task.Run returns a Task itself, and we can use it to know when the code we run
on the thread pool is finished—a feature the ThreadPool class does not have. Here’s an
adaptation of the example from listing 4.3 that creates multiple threads with the Thread
class and waits for all of them to finish.

Listing 4.8  Waiting for tasks to finish with Task.Run

public async Task RunInBackground()
{
 var tasks = new Task[10];
 for(int i=0;i<10;++i)
 {
 tasks[i] = Task.Run(RunInPool);
 }
 await Task.WhenAll(tasks);
 Console.WriteLine("All finished");
}

private void RunInPool()
{
 Console.WriteLine("Do stuff");
}

Here we can wait with the Task.WhenAll method that is much more elegant than the
Thread.Join loop. Not only does it not require a loop, but it also waits asynchronously.

Note that when you use Task.Run without waiting for it, the compiler will generate
a warning, but adding an await is almost never the right thing to do. If you await Task
.Run, you are telling your compiler to wait for the task to complete before moving to the
next line of code, essentially making it run sequentially, which defeats the purpose of
using Task.Run. If you await Task.Run, you’re taking on the overhead of managing dif-
ferent tasks without getting any benefits; it’s more efficient to just run the code without
Task.Run. The exception to this rule is the UI thread, and we will talk about it near the
end of this chapter.

To get rid of the warning, you can assign the Task returned by Task.Run to a discard
variable:

Task.Run(MethodToRunInBackground);
_ = Task.Run(MethodToRunInBackground);

Task.Run doesn’t have a parameterized version like Thread.Start and ThreadPool
.QueueUserWorkItem, but we can easily use lambdas to simulate it and pass data to the
code we run.

Queues tasks to run
on thread pool

Waits for tasks to complete

Might generate
a warning

No warning

46 Chapter 4  Multithreading basics

Listing 4.9  Using lambdas to create a parametrized Task.Run

public void RunInBackground()
{
 for(int i=0;i<10;++i)
 {
 var icopy = i;
 Task.Run(()=>
 {
 Console.WriteLine($"Hello from thread {icopy}");
 });
 }
}

Here we used the lambda’s feature of capturing local variables to pass a unique value
to each task. Note that we had to use the icopy variable that is scoped inside the loop
because otherwise, all threads would have shared the same i variable as the for loop,
and because it takes time for the task to start, by the time tasks run, the loop will have
finished, so all tasks will have only the final value of i (10 in this case).

When to use Task.Run
Use Task.Run for

¡	Code that uses async-await
¡	Short running tasks

Do not use Task.Run for
¡	Non-asynchronous long running tasks

In this case, we could create a different copy of i for each thread, but in many cases, we
have shared data that multiple threads need to access, and that brings us to accessing
the same variables from multiple threads.

4.2	 Accessing the same variables from multiple threads
Now that we know how to run code in parallel, we must deal with the consequences.
Most programs manipulate data in memory, and the problem with manipulating data
in a multithreaded program is that data access is often not a single uninterruptable
operation, even when it’s just one line of code or even one operator.

Let’s take the simplest data manipulation operation I can think of—incrementing
an integer:

int n=0;
++n;

The ++n line sure looks like it does a single thing. It’s just one variable and one opera-
tor, and it’s just three characters long. How many distinct operations can we do in just
three characters? Well, it’s actually three distinct operations:

1	 Read the value from the memory location allocated for the n variable into the CPU.

	 47Accessing the same variables from multiple threads

2	 Increment the value inside the CPU.

3	 Save the new value from the CPU back into the memory location allocated for
the n variable.

In a single-threaded program, this looks like a single operation because I can never
accidentally break this sequence or sneak some code that runs in the middle of the
sequence; however, in a multithreaded program, I can.

Operations that can’t be interrupted in a multithreaded application, usually because
they are a single operation at the hardware level, are called atomic operations. Figure
4.1 compares incrementing a variable twice in a single-threaded application, where
everything is sane and works as expected; in a multithreaded application on a single-
core CPU, where the way the system simulates multithreading can and will suspend
threads at the wrong time; and finally, multithreaded on multicore CPUs, where things
really happen in parallel.

Load value from
memory (0).

Start with the variable
initialized to 0.

Increment value (1)

Save value to
memory (1).

Load value from
memory (1).

Increment value (2)

Save value to
memory (2).

Incremented the value twice
and got 2

Load value from
memory (0).

Increment value (1)

Save value to
memory (1).

Load value from
memory (0).

Increment value (1)

Save value to
memory (1).

Single
threaded

Multithreaded
(single core)

Load value from
memory (0).

Increment value (1)

Save value to
memory (1).

Load value from
memory (0).

Increment value (1)

Save value to
memory (1).

Multithreaded
(multiple cores)

Incremented the value twice
and got 1

Incremented the value twice
and got 1

Figure 4.1  Operations can be interrupted at the wrong time and produce wrong results.

48 Chapter 4  Multithreading basics

As figure 4.1 illustrates, only in single-threaded applications, or applications that don’t
share data between threads, does our simple operation act like an operation that can’t
be interrupted. In all other configurations, anything can happen.

Let’s write code that demonstrates that point. In this example, we will create two
threads and increment the same variable from both. We will increment the variable five
million times in each thread.

Listing 4.10  Incorrect value when accessing shared data without locking

public void GetIncorrectValue()
{

 int theValue = 0;

 var threads = new Thread[2];
 for(int i=0;i<2;++i)
 {
 threads[i] = new Thread(()=>
 {
 for(int j=0;j<5000000;++j)
 ++theValue;
 });
 threads[i].Start();
 }

 foreach(var current in threads)
 {
 current.Join();
 }
 Console.WriteLine(theValue);
}

If we run this code, we may expect it to print 10000000, but after reading what I wrote
before the code sample, you already know that won’t be the case. In fact, the result will
change every time we run code, but it but will be around 6000000 most of the time.

So how do we solve this problem?

4.2.1	 No shared data

The simplest solution is to never share any data between threads. If each thread has its
own set of variables that can only be accessed by that thread, we never get a chance to
read or write the variable from another thread, and we are safe.

This is possible some of the time. For example, if we are writing a server that accepts
data from the client, calculates something based solely on that data, and then returns
results, each thread can operate without ever touching any value accessible to other
threads. However, this isn’t possible most of the time because our app is usually all
about manipulating shared data.

But what if we bypass the problem another way, for example, by not modifying the
shared data?

	 49Accessing the same variables from multiple threads

4.2.2	 Immutable shared data

If our problem is that it is not safe for one thread to access data while another is modify-
ing it, we can eliminate the problem completely if we just never modify any shared data.
A common example is a web server serving static files; because those files never change,
you can read them as many times as you like in parallel without causing any problems.

For most applications, it isn’t as easy as that, but this is the standard solution in func-
tional languages and can be done in C#. However, this is not how we usually write C#.

Making all the shared data immutable, which might seem impractical to developers
who aren’t used to functional programming, is actually not only possible but technically
an extremely good solution. The only problem is that it requires us to write our code
completely differently than we usually do in C#. I’m going to ignore it here because I
could fill an entire book on the subject (and Manning has actually published a book on
this topic; see Concurrency in .NET by Riccardo Terrell), and you would still not use this
approach because it would feel alien to the way we usually write C#. However, .NET does
have some built-in immutable data structures, which we’ll discuss in chapter 13.

And that brings us to the standard solution—locks and mutexes.

4.2.3	 Locks and mutexes

What we are left with is synchronizing access to the shared state—whenever a thread
needs to access the shared state, it “locks” it, and when it is finished with the data, it
“releases” the lock. If another thread tries to lock the data while it is already locked, it
must wait until the data is released by the current user.

In computer science, this is called a mutex (short for mutual exclusion). In C#, we have
the Mutex class that represents the operating system’s mutex implementation and the
lock statement that uses an internal .NET implementation. The lock statement is eas-
ier to use and faster (because it doesn’t require a system call), so we will prefer to use it.
Let’s rewrite our program from before using a lock.

Listing 4.11  Adding locks to avoid simultaneous access problems

public void GetCorrectValue()
{
 int theValue = 0;
 object theLock = new Object();

 var threads = new Thread[2];
 for(int i=0;i<2;++i)
 {
 threads[i] = new Thread(()=>
 {
 for(int j=0;j<5000000;++j)
 {
 lock(theLock)
 {
 ++theValue;
 }

Locks for the duration
of the modification

50 Chapter 4  Multithreading basics

 }
 });
 threads[i].Start();
 }

 foreach(var current in threads)
 {
 current.Join();
 }
 Console.WriteLine(theValue);
}

We can see that the lock statement is followed by a code block, and the lock is released
when we exit the block, so we can’t accidentally forget to release the lock. (The lock
will also be released if we exit the code block because of an exception, which is nice.)

We can also see that the lock statement accepts an object. We can use any .NET
object; however, the best practice is to utilize an internal object that is used just for the
lock and is accessible only to the code that needs it. Usually, it will be a private class
member of your code.

Why use lock with an object
In .NET 8 and earlier, the best practice is to use an object of type Object (that can also
be used with the keyword object) because we’re not going to use this object for anything
else, and an object of type Object has the lowest overhead of all reference type objects.

In .NET 9 and later, it’s better to use an object of type System.Threading.Lock. Using
a lock statement with the new Lock class is clearer (because it’s obviously a lock) and
may be faster in newer versions.

Using the lock statement with an Object is still supported, safe, and correct in .NET 9
and later. In this book, all the examples will use an Object and not a Lock for backward
compatibility.

Using lock in this example was required to make our program produce the correct
result, and synchronization objects such as lock and Mutex are needed for multi-
threaded programming. Those same objects also introduce a number of new failure
modes, the biggest of them being the deadlock.

4.2.4	 Deadlocks

A deadlock is the situation where a thread or multiple threads are stuck waiting for
something that will never happen. The simplest example is where one thread locked
mutex A and is waiting for mutex B, while a second thread locked mutex B and is wait-
ing for mutex A. Thus, thread A is waiting for thread B to complete, which is waiting
for thread A to complete, that we already established is waiting for thread B, which we
said is waiting for thread A, and so on—forever(figure 4.2).

	 51Accessing the same variables from multiple threads

First thread Second thread

Lock A

Lock B

Release B

Release A

Lock B

Lock A

Release A

Release B

waitin
g fo

rwaiting for

Both threads
are stuck here.

Figure 4.2  Deadlock that occurs when one thread has locked mutex A and is waiting for mutex B, while
another thread has locked mutex B and is waiting for mutex A. This creates a situation where thread A
is dependent on thread B to finish, but thread B is also dependent on thread A, which leads to an endless
cycle of waiting.

Now you can see why the best practice for the lock statement is to use a private object
that is only accessible by the code that needs it. It’s because external code could, other-
wise, accidentally or intentionally lock the same object we’ve locked at a time we don’t
expect and cause a deadlock. If we use a private object, we can still cause a deadlock,
but with both sides under our control, there are techniques we can use to prevent
deadlocks. There is an entire chapter on deadlocks and other typical multithreading
problems in this book, including on how to prevent them.

This is also why I said earlier that Thread.Suspend, Thread.Resume, and Thread
.Abort are so dangerous. Let’s say you wrote a very clever system to manage your pro-
gram’s work that uses Suspend and Resume to control threads. From the thread’s point
of view, your calls to Suspend can happen at any time (for example, when the thread is
in the middle of allocating memory and is holding a lock inside the memory manager).
Normally this lock would be completely safe because it is released quickly, and the code
never waits for anything while holding the lock, but now you’ve made the memory man-
ager’s code wait until you call Resume. In the meantime, no one can allocate memory,
including the thread that is supposed to call Resume. If this thread tries to allocate mem-
ory (a very common operation), you’ve just created a deadlock.

A deadlock can even happen without using locks or mutexes when two threads share
other resources; in some cases, this resource might even be the thread itself. This is
especially common with special-purpose threads, and the most common special-
purpose thread is the UI thread in native applications.

52 Chapter 4  Multithreading basics

4.3	 Special considerations for native UI apps
In all Windows desktop application technologies (WinForms, WPF, UWP, and WinAPI),
UI windows and controls can only be accessed from the thread that created them. Try-
ing to access the UI elements from a different thread might produce potentially incor-
rect results, error codes, or exceptions, depending on the UI technology you are using.

When the program starts, you set up the main window and then call Dispatcher
.Run or Application.Run (depending on UI technology). This is typically done in boil-
erplate code generated by Visual Studio. When you call Run, the thread enters a loop
that waits for UI events and, if needed, calls your code to handle them. If you block the
thread or perform any long activity in your UI event handlers, you are preventing the
thread from handling the UI events, and the program’s UI will freeze until your event
handler is complete.

You can take advantage of the fact that the UI thread is waiting and handing events
and inject your own events. This lets other threads ask for code to run on the UI thread,
which is useful because otherwise, it would have been difficult to update the UI due
to activity done in background threads (since the only thread that can access the
UI directly is the UI thread). You can do this by using the Control.BeginInvoke or
Control.Invoke method in WinForms and Dispatcher.BeginInvoke or Dispatcher
.Invoke methods in WPF or the generic SynchronizationContext interface.

In a typical workflow, in an event handler you write that is called in response to a UI
event such as a button click, the event handler uses the Thread class or the thread pool
to run code in the background, and when it finishes doing its work, this background
code calls BeginInvoke to make the UI thread update the UI with the results.

You must be extra careful with code that is running on the UI thread because you can
get into a situation where code is blocked or busy waiting for something that happens in
response to an Invoke/BeginInvoke call (or in some cases, and as we will see in the next
chapter, await). But because the thread is blocked or busy, the code passed to Invoke
/BeginInvoke never runs, which creates a deadlock situation and a frozen UI.

4.4	 Waiting for another thread
Sometimes, one thread must wait for another thread to do something. If we are waiting
for a thread we created to complete its work and terminate, we can use Thread.Join
(as discussed earlier in this chapter). But if the thread we are waiting for needs to con-
tinue running after notifying us, we can’t use Thread.Join, and we need some mech-
anism for one thread to send a signal to another thread and for that other thread to
wait until such a signal arrives. This mechanism is called ManualResetEventSlim and is
a newer, faster, and simpler implementation of ManualResetEvent. Like all the classes
that end with Slim, it forgoes some functionality, mostly cross-process capabilities and
compatibility with native code, in exchange for better performance.

ManualResetEventSlim works like a gate. When the event is in the unset state, the
gate is closed, and any thread calling its Wait method will wait. When the event is in the
set stage, the gate is open, and the Wait method will return immediately for any thread
currently waiting and for all future calls (until the event is reset to the unset state).

	 53Other synchronization methods

The ManualResetEventSlim constructor has a single parameter that can be false
to create the event in the unset state (gate closed) or true to create the event in the set
state (gate open). The Set method switches to the set state and opens the gate, while
the Reset method switches to the unset state and closes the gate. Let’s write code with
one thread waiting for another using ManualResetEventSlim.

Listing 4.12  Waiting for another thread

var myEvent = new ManualResetEventSlim(false);
var threadWeWaitFor = new Thread(()=>
 {
 Console.WriteLine("Doing something");
 Thread.Sleep(5000);
 Console.WriteLine("Finished");
 myEvent.Set();
 });
var waitingThread = new Thread(()=>
 {
 Console.WriteLine("Waiting for other thread to do something");
 myEvent.Wait();
 Console.WriteLine("Other thread finished, we can continue");
 });
threadWeWaitFor.Start();
waitingThread.Start();

In this example, we create two threads. The first simulates running a long operation by
waiting, and after completing the operation, it sets an event. The second thread uses
the event to wait for the first thread to complete.

4.5	 Other synchronization methods
In addition to the two multithreading synchronization methods discussed in this
chapter—the lock statement and ManualRestEventSlim—.NET contains a vast collec-
tion of other multithreading primitives. Each of those was written for a reason and is
extremely useful in some circumstances. All of them have something in common: in
most cases, you should avoid using them.

The lock statement is the simplest and safest thread synchronization construct in
.NET, and even it may have the deadlock problem we talked about earlier and a whole
lot of other pitfalls we’ll examine in chapter 7. For this reason, I recommend staying
with the lock statement and using the more advanced, and more dangerous, mecha-
nisms only if you have to—that is, only after you’ve profiled the code and discovered
that there is a real bottleneck in your code that can be solved by switching to another
thread synchronization technique.

For example, let’s take everyone’s favorite thread synchronization tool—the
Interlocked class—which provides operations that are both thread safe and do not
require locking. Seemingly, this is a magical class that solves all our problems; however,
it, too, has its pitfalls, the most common being

Creates a “gate
closed” event

Opens gate

Waits for gate
to open

54 Chapter 4  Multithreading basics

¡	It supports only a limited set of operations, namely Increment, Decrement, and
Add, as well as bitwise And and Or for some integer types (int, uint, long, and
ulong).

¡	All other operations can be implemented by the Exchange and CompareExchange
methods, and these methods must be used in a very specific way (you’ll see some
examples in chapter 13).

¡	It protects the operation, not the variable. If anyone accesses the variable “pro-
tected” by an interlocked operation by anything other than members of the
Interlocked class, all bets are off, and your code is no longer thread safe, even
the parts of the code that do use the Interlocked class. If you just want to read
the variable without modifying it, you must use Interlocked.Read and not use
the variable directly.

¡	While the value you get from the interlocked methods is guaranteed to be cor-
rect when the interlocked method runs, by the time you use it, even if it’s in the
same line of code, it might already be outdated.

¡	Only a single interlocked method call is thread safe. If you call Interlocked
.Increment twice for two variables, for example, it is possible for another thread
(even one also using the Interlocked class) to read or modify any of the variables
between those two operations. This is a special case of the “composing thread-
safe operations rarely results in a thread-safe operation” problem we’ll discuss in
chapter 7.

¡	While the Interlocked class members are faster than using a lock, they might be
significantly slower than using the normal operations (using the +=, ++, --, &, and
| operators).

With all those pitfalls (and more), it’s easier and safer to use the lock statement and
only use the Interlocked class (carefully) in code that is very performance sensitive.
The same goes for all the other multithreading primitives we didn’t discuss—avoid
using them unless you absolutely have to because they are complicated and not as safe
and easy to use as the lock statement.

4.6	 Thread settings
When talking about the Thread class, I said that you should only change the settings of
threads you create yourself using the Thread class (or the main thread if you are writ-
ing the application and not a library) and never change the settings of a thread pool
or a thread created by another component. The reason is that the component that
created the thread probably relies on the thread settings, and changing them would
interfere with the operation of the component.

Note that none of those settings works well with asynchronous code because any time
you use await (or ContinueWith), execution can continue on another thread that has
different settings. Here are the settings you can change using the Thread class in the
order of usefulness.

	 55Thread settings

4.6.1	 Thread background status

This is the most commonly used of all the thread settings. It is set by using the Thread
.IsBackground property, and it controls when your application exits. An application
exits when all the non-background threads exit. That means that if you start a thread
using the Thread class (and don’t set its IsBackground property), and your Main
method ends, the application will keep running until the thread exits. If you don’t
want the thread you created to keep the application running, you can just set the
IsBackgroud property to true.

This property must be set before calling Thread.Start. It has no effect when the
application is deliberately terminated (for example, by using Environment.Exit or
Environment.FailFast) or if the application exits due to an unhandled exception.

4.6.2	 Language and locale

You can change the thread language and locale using the Thread.CurrentCulture
property, which affects how values, mostly numbers and dates, are formatted (if you
don’t pass a CultureInfo object to the specific formatting method). It also affects the
selection of UI resources in GUI applications. The default is the language and format-
ting used on the user’s computer.

You should only use this property if your application has a way for the user to change
the language. Otherwise, you should respect the user’s computer settings.

4.6.3	 COM Apartment

You can use the Thread.SetApartmentState and Thread.TrySetApartmentState
methods to control the thread’s COM apartment type. This is only relevant to applica-
tions utilizing COM components in threads you create using the Thread class (for the
main thread, you should probably use the STAThread or MTAThread attributes on your
Main method).

COM is a huge topic and outside the scope of this book. The short explanation for
readers who are lucky and don’t use COM is that COM has a concept of apartment type,
and most COM objects can only run as a specific apartment type. Reading or setting the
COM apartment is only supported on Windows because other operating systems don’t
use COM.

4.6.4	 Current user

This property is mostly (but not officially) obsolete. You can use the static Thread
.CurrentPrincipal property to attach identity and permissions to the thread, which
does not change the thread’s permissions at the operating system level. It’s just a place
for you (or a library you are using) to store user information for your own permission
system.

In ASP.NET classic (.NET Framework 4.x and earlier), if you used the built-in authen-
tication system, the current web user information was stored in the CurrentPrincipal

56 Chapter 4  Multithreading basics

property. This is no longer the case in ASP.NET Core (.NET Core and .NET 5 and later);
in the newer version, the current user is in HttpContext.User only.

4.6.5	 Thread priority

Setting the thread priority is dangerous, and you shouldn’t do it. Unless you are
extremely careful, setting the thread priority is likely to cause performance degrada-
tion and/or deadlocks.

The problem is that it’s too easy to get into some variation of a high-priority thread
that is waiting for a resource held by a lower-priority thread, but that lower-priority
thread can’t release the resource because the higher-priority thread is taking all the
CPU time.

Controlling the thread’s priority is required for some kinds of system programming,
but you should never set thread priorities in normal applications. The priority is con-
trolled by the Thread.Priority property. The system is allowed to ignore the priority
you set.

Summary

¡	You can run multiple things in parallel. Each one of these things is called a
thread.

¡	The program starts with one thread running the Main method. This thread is
called the main thread.

¡	You can create dedicated threads that are completely under your control with the
Thread class by creating a Thread object, optionally reconfiguring it, and calling
the Thread.Start method to start running it.

¡	The thread pool is a collection of threads managed by the system and is available
for use when you have code to run. It is optimized for short-running tasks and
can create new threads as needed.

¡	Traditionally, you run code in the thread pool by using the ThreadPool.Queue
UserWorkItem method.

¡	A simpler and more async/await friendly way to run code in the thread pool is
using Task.Run.

¡	The main thread and threads you create with the Thread class are the only
threads that are completely under your control and that you can reconfigure any
way you want. However, you should never reconfigure threads created by other
components, especially threads managed by the thread pool.

¡	When you access data shared by more than one thread, you have to use a lock;
otherwise, different threads may overwrite data written by other threads, leading
to incorrect results.

¡	The same also applies to reading shared data. If you don’t use locks to synchro-
nize reads as well as writes, you may get stale data and even the results of incom-
plete writes.

	 57Summary

¡	In native UI applications, the thread running the UI is called the UI thread. It
is typically the main thread, but it can be a different thread if needed. The UI
thread is the only thread that may access windows and other UI controls.

¡	You should avoid blocking the UI thread because this makes the UI freeze.

58

5async/await and
multithreading

This chapter covers

¡	Using async/await and multithreading together
¡	Running code after await
¡	Using locks with async/await

Asynchronous programming is about doing stuff (such as reading a file or waiting
for data to arrive over the network) that doesn’t require the CPU in the background
while using the CPU to do something else. Multithreading is about doing stuff that
may or may not require the CPU in the background while using the CPU to do
something else. Those two things are obviously similar, and we use the same tools to
interact with them.

In chapter 3, we talked about async/await but didn’t mention threads; we espe-
cially ignored where the callback passed to ContinueWith runs. In chapter 4, we
talked about multithreading and almost didn’t mention async/await at all. In this
chapter, we’ll connect these two together.

	 59Asynchronous programming and multithreading

5.1	 Asynchronous programming and multithreading
To demonstrate the interaction between asynchronous programming and multithread-
ing, we’ll start with a method that reads 10 files in parallel using asynchronous opera-
tions and then waits for all the read operations to complete. And just for the fun of it,
we won’t make the method itself async but just use asynchronous operations.

Listing 5.1  Reading 10 files

public void Read10Files()
{
 var tasks = new Task[10];
 for(int i=0;i<10;++i)
 {
 tasks[i] = File.ReadAllBytesAsync($"{i}.txt");
 }
 Task.WaitAll(tasks);
}

This is obviously asynchronous programming. Reading a file is a textbook example of
work done mostly outside the CPU (and yes, I completely ignored the data we loaded
from the file—this is just a demonstration of the mechanics of Task and asynchronous
operations). But what would it look like if instead we wrote code to compute 10 values
(or, for simplicity’s sake, let’s print text claiming we are calculating) in parallel and wait
for the results? We’ll use Task.Run, which runs our code in a thread pool thread (see
chapter 4).

Listing 5.2  Calculating 10 values

public void Compute10Values()
{
 var tasks = new Task[10];
 for(int i=0;i<10;++i)
 {
 tasks[i] = Task.Run(()=>Console.WriteLine("Calculating"));
 }
 Task.WaitAll(tasks);
}

I literally changed just one line and didn’t even change the entire text of the line. This
demonstrates that the same tools used for asynchronous operations work in the exact
same way for multithreading. Let’s take it one step further and use multithreading to
read the files in parallel.

Listing 5.3  Reading 10 files using multithreading

public void Read10Files()
{
 var tasks = new Task[10];

60 Chapter 5  async/await and multithreading

 for(int i=0;i<10;++i)
 {
 var icopy = i;
 tasks[i] = Task.Run(()=>File.ReadAllBytes($"{icopy}.txt"));
 }
 Task.WaitAll(tasks);
}

We needed to create a local variable inside the loop. Otherwise, all the threads would
have shared the same i variable, and by the time the threads ran, the loop would have
finished already, so i would have its final value of 10. That would have made all the
threads try to read 10.txt and fail because our files are 0.txt–9.txt.

Other than that, the code looks almost the same as the one in listing 5.1, and it does
exactly the same thing. However, it does it in a much more wasteful way because this
example uses up to 10 separate threads (depending on how quickly the system can read
the files). Furthermore, each and every one of them is stuck waiting for the file to arrive
from the hard drive, while listing 5.1 uses just one thread waiting for all the files.

But a real program wouldn’t read files and ignore the data. A real program would
read the file and then do something with the file’s content. Let’s fix the latest example
to also do something (or just write to the console that we are doing something).

Listing 5.4  Reading 10 files and doing something with the data

public void Process10Files()
{
 var tasks = new Task[10];
 for(int i=0;i<10;++i)
 {
 var icopy = i;
 tasks[i] = Task.Run(()=>
 {
 File.ReadAllBytes($"{icopy}.txt");
 Console.WriteLine("Doing something with the file's content");
);
 }
 Task.WaitAll(tasks);
}

This will use up to 10 threads from the thread pool (because remember, Task.Run uses
the thread pool), possibly creating new threads if there weren’t enough threads already
in the thread pool and then immediately putting all those threads in a blocked state
where they would be doing nothing except waiting for the hard drive. Let’s see what
would happen if we wrote the exact same thing using asynchronous operations only.

Listing 5.5  Reading 10 files asynchronously and processing the data

public void Process10Files()
{
 var tasks = new Task[10];

	 61Asynchronous programming and multithreading

 for(int i=0;i<10;++i)
 {
 var icopy = i;
 tasks[i] = Task.Run(async ()=>
 {
 await File.ReadAllBytesAsync($"{icopy}.txt");
 Console.WriteLine("Doing something with the file's content");
 });
 }
 Task.WaitAll(tasks);
}

The code looks exactly the same, except we switched from File.ReadAllBytes to
File.ReadAllBytesAsync and added the async and await keywords; however, what
happens at runtime is very different. Instead of using 10 threads for the whole time,
this will pick up a thread from the thread pool, use it to start the read operation, and
then free the thread and use the callback mechanism we talked about in chapter 3.
That means the program will use a small number of threads to start the read opera-
tions (maybe even one; it depends on the current load on the computer and the state
of the thread pool), and then use no threads at all while waiting. Only after the data
arrives will it start using 10 threads (that is, only when there is work for them to do).

In fact, this is even better because as we are reading all the files from the same hard
drive, we are likely to get the files’ contents one after the other and not all at once
(because there’s just one hard drive with one data connection to the motherboard),
and each task will only pick up a thread after its data is available. That means it’s likely
we’ll never actually use 10 threads simultaneously (but we can’t tell in advance because
multithreaded programming is inherently unpredictable).

There was one small lie two paragraphs ago: I said we don’t use any threads while
waiting for the files, but we are actually using one thread—the thread that called
Process10Files and is waiting for all the processing to complete. We can fix this; if we
just make Process10Files itself async, we will get the following.

Listing 5.6  Making the caller async too

public async Task Process10Files()
{
 var tasks = new Task[10];
 for(int i=0;i<10;++i)
 {
 var icopy = i;
 tasks[i] = Task.Run(async ()=>
 {
 await File.ReadAllBytesAsync($"{icopy}.txt");
 Console.WriteLine("Doing something with the file's content");
 });
 }
 await Task.WhenAll(tasks);
}

Makes the
method async

Changes WaitAll
to WhenAll

62 Chapter 5  async/await and multithreading

This will free the thread that called Process10Files itself and will truly use no threads
at all until we finish reading some files.

If we free up all the threads while waiting for the data to arrive, when the data finally
arrives, we need to continue running, but we can’t because we freed up the thread. So
where does our code run after the await call?

5.2	 Where does code run after await?
If you remember from chapter 2, I said that using the await keyword is equivalent to
calling Task.ContinueWith, so the code

var buffer = await File.ReadAllBytesAsync("somefile.bin");
Console.WriteLine(buffer[0]);

is translated by the compiler to

File.ReadAllBytesAsync("somefile.bin").ContinueWith(task=>
{
 var buffer = task.Result;
 Console.WriteLine(buffer[0]);
});

I also mentioned that this is a simplification and that await is a bit more complicated.
Now it’s time to see exactly what await does differently.

ContinueWith runs the callback in the thread pool, just like Task.Run. Technically,
ContinueWith has a version that accepts parameters specifying how to run the callback
passed to it, but I won’t go into that because await takes care of it for us, and Continue-
With is very rarely used directly in application code.

await tries to run the code after it in a thread of the same type, so in most cases, you
don’t have to think about the possibility of a thread change. If await can’t use a thread
of the same type, it will use the thread pool instead. The specific rules are

¡	If you are using await on the UI thread of a WinForms, WPF, or UWP app, the
code after the await will run on the same thread.

¡	If you are using await while processing a request in an ASP.NET Classic applica-
tion (.NET framework 4.8 and earlier), the code after the await will run on the
same thread.

¡	If your code or a framework you are using changes the current thread’s
SynchronizationContext or TaskFactory (we’ll talk about them later in the
book), then await will use those. This is how the frameworks in the previous
bullet points control the behavior of await; except for UI frameworks, this is
extremely rare.

¡	In all other cases, the code after await will run on the thread pool. Here are
some common examples:

–	 If the code calling await is running in the thread pool, the code after the await
will also run in the thread pool. However, it might run on a different thread.

	 63Where does code run after await?

–	 This also applies to code processing a request in an ASP.NET Core application
(.NET Core or .NET 5.0 and later) because ASP.NET Core uses the thread
pool for all processing.

–	 If you use await in the main thread of a non-UI app, the code after the await
will also run in the thread pool and not in the main thread. The system will
keep the main thread (and the entire application) alive until the Task you are
awaiting completes.

–	 If you use await in a thread you created with the Thread class, inside the
method you passed to the Thread constructor, the thread will terminate, and
the code after the await will run on the thread pool.

Those rules only apply if await has to actually wait. If the operation you are awaiting has
already completed by the time await runs, in almost all cases, the code will just continue
normally without switching threads. The most common situation in which this happens
is if you are awaiting a method that doesn’t do anything asynchronous. For example,
the following method calls a remote server to retrieve a result, and it uses a very simple
cache to avoid repeating those costly network calls if it already got the result.

Listing 5.7  Getting a value from a server with caching; not thread safe

// This method is not thread safe, keep reading for the correct version
private Dictionary<string,string> _cache = new();

public async Task<string> GetResult(string query)
{
 if(_cache.TryGetValue(query, out var cacheResult)
 return cacheResult;
 var http = new HttpClient();
 var result = await http.GetStringAsync(
 "https://example.com?"+query);
 _cache[query] = result;
 return result;
}

This method first checks whether the query string is in the cache; if the value is already
there, it returns it without doing asynchronous work. If not, the code performs an
asynchronous HTTP call to get the result from the server. After the code gets the result
from the server, it stores it in the cache.

The first time you call this method for a given query, it will return a Task that needs
awaiting, but on subsequent calls for the same query, it will return a Task that has already
completed because no asynchronous operation has happened. To demonstrate this, let’s
write some code that calls this method from a thread created using the Thread class.

Listing 5.8  Calling GetResult from a thread created by the Thread class

var thread = new Thread(()=>
{
 var result = await GetResult("my query");

If the result is in the
cache, return it.

Calls server to
get the result

Saves the result in the cache

64 Chapter 5  async/await and multithreading

 DoSomething(result);
});
thread.Name = "Query thread";
thread.Start();

We create a thread that calls the GetResult method from listing 5.7 and then does
something with the result. One of the reasons for using the Thread class is the ability
to change the thread properties. In this case, I changed the thread name. The thread
name is just a string attached to the thread. We can view it in the threads window in
Visual Studio to quickly identify the thread and understand its purpose. It has no effect
on how the thread runs.

If this code happens to be the first time, we call GetResult("my query"). The thread
will terminate because, if you remember from chapter 3, await registers code to run
later and then returns control to the caller like a return statement, and later, when
DoSomething runs, it will run on the thread pool and not in our named thread. In con-
trast, if the result for “my query” is already in the cache, the code will continue in our
named thread as if the await wasn’t there.

Now let’s see how to make the GetResult method from listing 5.7 thread safe.

5.3	 Locks and async/await
The problem with the GetResult from listing 5.7 is that it will most likely run in a
multithread environment (by virtue of having an await statement), but it is not thread
safe. It is not safe to access a Dictionary<TKey,TValue> (either to modify it or to read
from it) while it is being modified by another thread. The code in listing 5.7 modifies
the dictionary without protecting it from concurrent access. Fortunately, we learned
about the lock statement in the previous chapter. Unfortunately, if we just add a lock
around the entire method body, it won’t compile.

Listing 5.9  Getting a value from a server with caching protected by a lock

private Dictionary<string,string> _cache = new();
private object _cacheLock = new();
public async Task<string> GetResult(string query)
{
 lock(_cacheLock)
 {
 if(_cache.TryGetValue(query, out var cacheResult)
 return cacheResult;
 var http = new HttpClient();
 var result =
 await http.GetStringAsync(
 "https://example.com?"+query);
 _cache[query] = result;
 }
 return result;
}

On which thread
will this run?

Compiler error

	 65Locks and async/await

This doesn’t compile because we are not allowed to use await inside the code block of
the lock statement. There are two reasons for this—one conceptual and one practical:

¡	The conceptual problem is that calling await frees up the thread and potentially
runs other code, so we don’t even know what code will run. This is a problem
because, as we talked about in the previous chapter, running code you don’t con-
trol while holding a lock can cause deadlocks.

¡	The practical problem is that the code after the await can run on a different
thread, and the system used internally by the lock statement only works if you
release the lock from the same thread that locked it.

How can we solve the problem? It’s easy. Rearrange the code so that the await is out-
side the lock. We don’t need to hold the lock while doing the HTTP call. We just need
to protect the cache access before and after the call.

Listing 5.10  Releasing the lock while awaiting

private Dictionary<string,string> _cache = new();
private object _cacheLock = new();
public async Task<string> GetResult(string query)
{
 lock(_cacheLock)
 {
 if(_cache.TryGetValue(query, out var cacheResult)
 return cacheResult;
 }
 var http = new HttpClient();
 var result = await http.GetStringAsync(
 "https://example.com?"+query);
 lock(_cacheLock)
 {
 _cache[query] = result;
 }
 return result;
}

In this code, we solved our compilation problem by moving the lock to protect only
the cache access and not the whole method, but at the cost of releasing the lock in
the middle of the method. In the hypothetical method that was completely protected
by a lock, trying to run the method twice simultaneously would result in the sequence
shown in figure 5.1.

One of the concurrent calls gets to run first. It tests the cache, does not find a cached
result, makes the HTTP call, and updates the cache, all while inside the lock block. The
other call will run second after the cache is updated and will return the cached value.
But in the version of the method that actually compiles, we get the sequence as shown
in figure 5.2.

One of the concurrent calls gets to run first, tests the cache, and does not find a
cached result inside the first lock block. It will then release the lock. At this point, the

Lock while checking
the cache

The async HTTP call

Lock while updating
the cache

66 Chapter 5  async/await and multithreading

GetResult

Lock

HTTP call

Update cache.

Unlock

Check cache.

Thread 1

Check cache.

GetResult

Lock

Unlock

Find value in
cache

Thread 2

Wait.

Return value
from HTTP call

Return value
from cache

Figure 5.1  Sequence when locking the entire body of the method

GetResult GetResult

Lock

HTTP call

Unlock

Wait.
Check cache.

Thread 1 Thread 2

Lock

Unlock

Update cache.

Check cache.

HTTP call

Lock

Unlock

Lock

Unlock

Update cache.

Value not
updated in
cache by

thread 1 yet

Make HTTP call
again

Overwrite
previous value

in cache

Return value
from the second

HTTP call

Return value
from the first

HTTP call

Figure 5.2  Sequences when locking only the parts that touch the dictionary

	 67UI threads

other call will get to run and also test the cache, also not finding a cached result because
the first HTTP call hasn’t finished yet. At some point, the first HTTP call will complete,
and the first thread will update the cache. A bit later, the second HTTP call will com-
plete, and the second thread will overwrite the value in the cache (that is why we use the
operator [] and not Add to update the cache—Add would have thrown an exception).

This is a simple form of caching that works very well for any long process (both asyn-
chronous and non-asynchronous) if that process always returns the same value for the
same inputs, we are willing to accept the potential performance hit of running the long
process multiple times before the first run completes, and the cache is populated. If
we are not willing to run the long process multiple times, this way of writing the cache
won’t work.

5.4	 UI threads
The rules for which thread runs the code after the await have a special case for the
UI thread of native apps. Let’s see why. To demonstrate the problem this solves, let’s
write an event handler for a WinForms button click that does some long calculation
and updates the UI with the result (don’t worry, you don’t need to know WinForms to
understand the code).

Listing 5.11  Long calculation that freezes the UI

private void MyButtonClick(object sender, EventArgs ea)
{
 int result = 0;
 result = LongCalculation();
 MyLabel.Text = result.ToString();
}

In response to a button click, this code calls LongCalculation and then displays its
result in a label control. However, we have a problem: the thread will be busy while
running LongCalculation, so the application’s UI will be frozen until the calculation
is done. But we can fix it with multithreading.

Listing 5.12  Calculation that doesn’t freeze the UI but throws an exception

private void MyButtonClick(object sender, EventArgs ea)
{
 Task.Run(()=>
 {
 int result = 0;
 result = LongCalculation();
 MyLabel.Text = result.ToString();
 }
}

We just used Task.Run to move all the calculations to a background thread so the
UI thread will be free to handle UI events, and the UI will not freeze. We solved the

Freezes the UI

Exception

68 Chapter 5  async/await and multithreading

previous problem, but we created another one. Now when we try to display the result,
we are doing it from the wrong thread, and this will throw an exception and crash the
program instead of showing the result. We need a way to return to the UI thread after
the background process completes. Luckily, Task.Run returns a Task we can use. Spe-
cifically, we can use it to know when the result is ready.

Listing 5.13  Running in the background from the UI code correctly

private async void MyButtonClick(object sender, EventArgs ea)
{
 int result = 0;
 await Task.Run(()=>
 {
 result = LongCalculation();
 });
 MyLabel.Text = result.ToString();
}

Here we used Task.Run to run the long calculation in the background and await to
free up the UI thread until the calculation is complete. Because we called await in the
UI thread, when the calculation is complete, our code runs in the UI thread again and
so can safely set the text of the label.

Now you can see why await Task.Run is valuable when used to run a background
process from the UI thread, unlike almost every other case where it is just wasteful (see
the previous chapter).

Summary

¡	The tools for using asynchronous operations are also good for using multi-
threaded operations.

¡	The high-performance code that benefits from multithreading is also likely to
benefit from using asynchronous operations.

¡	In UI apps, when using await in the UI thread, the code after the await will also
run in the UI thread.

¡	In all other cases, the code after await will run in the thread pool (except if some-
one used SynchronizationContext or TaskFactory to override this behavior).

¡	If the code calling await is running in the thread pool, the code after the await
might run in a different thread in the thread pool.

¡	You can’t use await inside the code block of a lock statement. The best solution
is to rearrange your code and move the await outside of the lock block.

Runs in background;
UI not frozen

Back in the UI thread

69

6When to use
async/await

This chapter covers

¡	The importance of async/await
¡	The disadvantages of async/await
¡	Deciding when to use async/await and when to 	
	 avoid it

You probably won’t find it surprising that I, the author of a book about multithread-
ing and asynchronous programming, think that they are important, useful, and
something that every software developer should know. However, it’s important to
acknowledge that they are not suitable for every situation, and if used inappropri-
ately, they will make your software more complicated and create some bugs that are
really difficult to find.

This chapter talks about the performance gains of multithreading and asynchro-
nous programming, as well as how asynchronous programming can backfire some-
times and make our life miserable. For the rest of this chapter, I’m going to talk about
the concept of asynchronous programming and the C# feature of async/await as if
they were interchangeable—while they are different, async/await is by far the eas-
iest way to do asynchronous programming in C#. If you want to use asynchronous

70 Chapter 6  When to use async/await

programming in C#, you should use async/await, and conversely, if you don’t use asyn-
chronous programming, you will find async/await mostly useless.

First, let’s quickly go over the scenarios where async/await truly shines.

6.1	 Asynchronous benefits on servers
No one builds non-asynchronous single-threaded servers. Such a server would only be
able to handle one client at a time, and the maximum load would be one, or maybe the
number of connections we configure this server to have in a pending state before our
software starts handling them, depending on how you measure load.

Single-threaded asynchronous servers are quite common, but almost exclusively in
languages that don’t support multithreading, such as node.js and Python. Well-written
asynchronous servers can be quite efficient, especially if they are mostly IO bound and
do very little processing (for example, serving static files or making database queries).
But if you have to do any nontrivial processing, it is advantageous to be able to use that
expensive multicore CPU inside the server.

To demonstrate the performance advantage of adding asynchronous techniques
to a multithreaded server, we will build two nearly identical servers, a classic one-
thread-per-request server you will find in network programming tutorials and an
asynchronous server. Those will be simple servers serving a static file. They will wait for
a network connection, and when a client connects, they will read a file from disk and
send it to the client.

But before we can test our servers, we need a load-testing client. We’ll make our
client asynchronous too because it’s more efficient (as we’ll see from running the tests
later in this chapter), and we want to minimize the effect of the client on performance
so we can better measure the performance of the servers. Also, the client is a nice exam-
ple of an asynchronous program.

In this program, we start by getting the number of connections from the com-
mand line, as this will let us easily run tests with different loads. We will then call Run
Test, which actually connects to the server. We will measure how long it takes until
all instances of RunTest complete using the System.Diagnostics.Stopwatch class. We
will also count the number of times we failed to connect because that will give us a clue
about the maximum number of connections the server can handle.

Listing 6.1  Asynchronous load-testing client

using System.Diagnostics;
using System.Net;
using System.Net.Sockets;

int count = int.Parse(args[0]);
Console.WriteLine($"Running with {count} connections");

var tasks = new Task[count];
int failCount = 0;
var faileCountLock = new object();

	 71Asynchronous benefits on servers

Stopwatch sw = Stopwatch.StartNew();

for (int i = 0; i < count; ++i)
{
 tasks[i] = RunTest(i);
}
Task.WaitAll(tasks);
sw.Stop();

lock(faileCountLock)
 if (failCount > 0) Console.WriteLine($"{failCount} failures");
Console.WriteLine($"time: {sw.ElapsedMilliseconds}ms");

Task RunTest(int currentTask)
{
 return Task.Run(()=>
 {
 var rng = new Random(currentTask);
 await Task.Delay(rng.Next(2*count));
 using var clientSocket =
 new Socket(SocketType.Stream, ProtocolType.Tcp);
 try
 {
 await clientSocket.ConnectAsync(
 new IPEndPoint(IPAddress.Loopback, 7777));
 var buffer = new byte[1024 * 1024];
 while (clientSocket.Connected)
 {
 int read = await clientSocket.ReceiveAsync(
 buffer, SocketFlags.None);
 if (read == 0) break;
 }
 }
 catch
 {
 lock (faileCountLock)
 ++failCount;
 }
 });
}

Note that in the loop, when we called the RunTest method that actually connects to the
server, we did not await it because we want all instances to run in parallel. If you remem-
ber from chapter 3, calling an async method does not run it in the background—the
method runs normally until the first await.

Inside the RunTest method, we made sure everything ran in the background using
Task.Run. Because RunTest only called Task.Run, we can just return the Task we got
from Task.Run instead of making RunTest async and using await. This improves effi-
ciency because the compiler doesn’t have to do the async transformation and doesn’t
have to create and manage a Task for RunTest that would only mirror the Task returned
from Task.Run.

Starts stopwatch

Runs individual test

Waits for all tests to complete

Stops stopwatch

Runs tests in parallel

Connects to server

Reads data

Counts failures

72 Chapter 6  When to use async/await

Inside the test code, we add a small random delay before connecting, because in
real-world scenarios, we don’t have all clients trying to connect at exactly the same time,
and then we connect to the server and read all the information the server sends. We use
sockets because this is the lowest overhead network access technology we have access to.

Socket communication
We used socket communication in the load testing client and server. Because this isn’t a
book about networking, I won’t go into details, but here’s a very short explanation of the
networking calls we used.

On the server, we first must use Bind to take control of a network port, and then we call
Listen to signal we are waiting for connections from clients. Accept will actually wait
for the next connection. When a client connects to the server, Accept will return a new
socket representing the new connection. AcceptAsync is the asynchronous version of
Accept that, instead of waiting, returns a Task<Socket> that will complete when a cli-
ent connects.

On the client, we then call ConnectAsync to connect to the server. We use IPAddress
.Loopback as the server address, that is, a special address that always contacts the cur-
rent computer. It is better known as localhost in most networking tools.

Send sends data, and it returns after the data is handed over to the network stack inside
the sending computer (not after the data is sent and not after the data is received by the
other side; you can’t know when those happen). Send returns the number of bytes that
were actually accepted by the network stack on a modern computer, which will almost
always be the entire buffer you are trying to send. SendAsync is the asynchronous ver-
sion. It returns immediately and returns a Task<int> that will complete when Send
would have returned.

ReceiveAsync reads data into an array we give it and returns a Task<int> with the
number of bytes received. If that Task’s result is 0, it means no more data is available,
and we assume the server closed the connection.

And finally, Shutdown shuts down the connection gracefully, including sending a mes-
sage to the other side notifying it that the connection is now closed. It also clears all the
resources held by the connection.

That was all the code for the test client. Now we need a server. Our first server will be
the classic textbook one-thread-per-request server.

Listing 6.2  One-thread-per-request server

using System.Net;
using System.Net.Sockets;
var listenSocket = new Socket(SocketType.Stream, ProtocolType.Tcp);
listenSocket.Bind(new IPEndPoint(IPAddress.Any, 7777));
listenSocket.Listen(50);

	 73Asynchronous benefits on servers

while (true)
{
 var connection = listenSocket.Accept();
 var thread = new Thread(() =>
 {
 using var file = new FileStream(@"somefile.bin",
 FileMode.Open, FileAccess.Read);
 var buffer = new byte[1024 * 1024];
 while (true)
 {
 int read = file.Read(buffer, 0, buffer.Length);
 if ((read) != 0)
 {
 connection.Send(
 new ArraySegment<byte>(buffer, 0, read),
 SocketFlags.None);
 }
 else
 {
 connection.Shutdown(SocketShutdown.Both);
 connection.Dispose();
 return;
 }
 }
 });
 thread.Start();
}

That is our classic multithreaded non-asynchronous server. Now it’s time to test it.
I’ve run the server and then the client with 50 connections. The test completed suc-

cessfully in just under 8 seconds. I looked at the number of threads that the server spun
up, and the server used 56 threads. Of those, 50 threads are the threads we created to
handle the requests. Apart from this, there’s also the main thread and five more back-
ground threads created by the .NET runtime.

I repeated the test with 100 connections. The test also completed successfully, this
time in about 16 seconds. Looking at the threads of the server process, I’ve seen 106
threads: 100 worker threads instead of the 50 in the previous test, and the same number
of overhead threads.

After that success, I doubled the number of connections to 200. This time, the test
failed with 61 of the connections not being able to complete receiving the file (the time
the test took to complete is irrelevant because it didn’t do all the work). The failure is
caused by the program being too slow to get to new connections because it is too busy
handling the earlier connections. This will overwhelm the pending connection queue
and make the network stack refuse to accept any more connections.

Now that we’ve seen the limits of the first server, let’s write an asynchronous one.
To keep everything as fair as possible, we will only change all the blocking and thread-
management calls to their asynchronous version.

Handles connection
in a new thread

Sends file content
to client

Don’t forget to
start the thread.

74 Chapter 6  When to use async/await

Listing 6.3  Asynchronous server

using System.Net;
using System.Net.Sockets;

var listenSocket = new Socket(SocketType.Stream, ProtocolType.Tcp);
listenSocket.Bind(new IPEndPoint(IPAddress.Any, 7777));
listenSocket.Listen(100);

while(true)
{
 var connection = await listenSocket.AcceptAsync();
 Task.Run(async () =>
 {
 using var file = new FileStream("somefile.bin",
 FileMode.Open, FileAccess.Read);
 var buffer = new byte[1024*1024];
 while (true)
 {
 int read = await file.ReadAsync(buffer,
 0, buffer.Length));
 if (read != 0)
 {
 await connection.SendAsync(
 new ArraySegment<byte>(buffer, 0, read),
 SocketFlags.None);
 }
 else
 {
 connection.Shutdown(SocketShutdown.Both);
 connection.Dispose();
 return;
 }
 }
 });
}

This code is identical to that in listing 6.2, except we changed Accept to AcceptAsync,
Send to SendAsync, new Thread to Task.Run, and of course, we’ve added the async and
await keywords where needed.

The difference between servers in run time is that AcceptAsync, SendAsync, and
ReadAsync will all release the thread instead of blocking it. This means we need just a
small number of threads to handle the same number of connections in parallel. Instead
of creating a new thread for each connection, we can use the thread pool (that we use
with Task.Run).

Now we can finally compare the performance of the asynchronous and non-
asynchronous versions (see table 6.1). Like with the first server, I’ve first run the test
with 50 connections. The test completed successfully in just under 8 seconds—the same
as the non-asynchronous version. However, when looking at the number of threads, this
version used only 27 threads instead of the 56 used by the non-asynchronous version
(those are 20 thread pool threads doing all the work, the main thread, and six threads

AcceptAsync instead
of Accept

Task.Run instead
of new Thread

File.ReadAsync
instead of Read

SendAsync instead
of Send

	 75Asynchronous benefits on native client applications

created by the framework or operating system—one more overhead thread compared
to the non-asynchronous version).

After the first successful test, I doubled the number of connections to 100, and the test
completed successfully in about 16 seconds—again the same as the non-asynchronous
version. Looking at the threads, we see only 27 threads—the same number of threads as
in the 50-connection run (compared to 106 for the non-asynchronous version).

I doubled the number of connections again to 200 (if you remember, at this point,
the non-asynchronous version started failing), but the asynchronous version completed
successfully again. Looking at the threads, we can again see only 27 threads.

I’ll spare you all the boring details of the rest of the tests. On the poor laptop I’m writ-
ing this on, the non-asynchronous version managed to handle around 130 connections,
while the asynchronous version got to just above 300.

Table 6.1  Differences between non-asynchronous and asynchronous connection handling

Number of
connections

Non-asynchronous Asynchronous

Failures Time
No. of

threads
Failures Time

No. of
threads

50 0 8389 ms 56 0 8534 ms 27

100 0 16538 ms 106 0 16310 ms 27

200 61 N/R N/R 0 32132 ms 27

300 168 N/R N/R 0 48229 ms 27

400 265 N/R N/R 72 N/R N/R

Those numbers might not look impressive, but it’s unlikely that a real-world server
will have to handle this number of connections in such a short time (an average of a
connection every 2 ms) while also running Word and Visual Studio. In addition, it’s
important to note those numbers are very “noisy”; the exact number of connections
will vary depending on your hardware, details of your application, what is running at
the time, usage patterns, .NET version, operating system version, and more. But you
should see that the asynchronous version consistently uses fewer resources and can
handle greater loads. Basically, what we see here is that the asynchronous server could
easily handle a double load of the non-asynchronous version while using a fraction of
the resources.

These days, I expect most C# development to be done on the server, but there are
also native and desktop applications.

6.2	 Asynchronous benefits on native client applications
Asynchronous programming is also very useful in desktop applications. While desktop
applications typically don’t do tens of thousands of things simultaneously (due to the
hardware limits of the person in front of the computer), they do need to keep the
thread managing the UI available at all times so the UI does not become frozen.

76 Chapter 6  When to use async/await

For example, if we have a long calculation that is making our UI nonresponsive, the
code making the UI nonresponsive is likely to look like this:

public void button1_Click(object sender, EventArgs args)
{
 LongCalculation();
 UpdateUIWithCalculationResults();
}

We need to move LongCalculation to a background thread, but we must keep Update
UiWithCalculationResults in the UI thread. Thus, we need to do something like

public void button1_Click(object sender, EventArgs args)
{
 Task.Run(()=>
 {
 LongCalculation();
 BeginInvoke(()=>
 {
 UpdateUIWithCalculationResults();
 });
 });
}

We used Task.Run to run code on a background thread and then BeginInvoke to run
code back on the UI thread. With async/await, we can rely on await to get us back to
the correct thread, and then we only need to write

public async void button1_Click(object sender, EventArgs args)
{
 await Task.Run(()=>
 {
 LongCalculation();
 });
 UpdateUIWithCalculationResults();
}

Those three advantages of async/wait (that asynchronous code can handle higher
loads, that it uses less resources even at lower loads, and that it makes it easy to use mul-
tithreading in conjunction with code that has to run on a specific thread) are pretty
significant and can easily outweigh all the downsides. But the downsides are there, and
you should learn about them.

6.3	 The downside of async/await
Up until now, we talked extensively about the benefits of asynchronous programming
and why async/await makes it easy. But, like just about everything, asynchronous pro-
gramming also has some significant downsides.

	 77The downside of async/await

6.3.1	 Asynchronous programming is contagious

Any code that calls asynchronous code must be asynchronous itself. If you are calling
asynchronous code, you must use await or callbacks to get the results. This is often
referred to as “asynchronous all the way down.”

To illustrate this, we’ll start with a program that takes a picture using the camera
attached to the computer. The following code snippet is representative of what you
need to do to use a camera using Windows’ UWP API. To simplify the example, I
removed all the parameters and the code that searches for a camera, but the structure
of the code is correct:

public void TakeSinglePicture()
{
 cameraApi.AquireCamera();
 cameraApi.TakePicture();
 cameraApi.ReleaseCamera();
}

The code first acquires the camera, then uses it to take a picture, and finally frees the
camera and any associated resources. Now let’s say that in the newest version of our
imaginary camera, API made the TakePicture method asynchronous. If we just switch
to the new asynchronous version, we get

public void TakeSinglePicture()
{
 cameraApi.AquireCamera();
 cameraApi.TakePictureAsync();
 cameraApi.ReleaseCamera();
}

However, this is a logic error: taking the picture is asynchronous, so it will complete in
the background, but in this example, we don’t wait for it to complete, so we release the
camera while it’s still taking the picture. What we need to do is to somehow wait for the
TakePictureAsync to complete before continuing. Luckily for us, async/await makes
it easy, but it does require changing the TakeSinglePicture method to be async too:

public async Task TakeSinglePicture()
{
 cameraApi.AquireCamera();
 await cameraApi.TakePictureAsync();
 cameraApi.ReleaseCamera();
}

It looks like it was an easy fix, but now we need to do the same to the code that calls
TakeSinglePicture, and the code that calls that, and the code that calls that, all the
way back to the entry point of our code.

You may think that we can use Task.Wait() and Task.Result to bypass the problem
by turning the asynchronous code into blocking code, but unless the asynchronous

Error: Releases camera before
TakePictureAsync is complete

Changes from void
to async Task

78 Chapter 6  When to use async/await

code was specifically designed to support this use case, this might cause weird bugs and
deadlocks. Some APIs (like the UWP camera API this example is inspired by) will out-
right fail and throw an exception. And even if it does work, by turning the asynchronous
call into a blocking call, we are eliminating any benefits of having an asynchronous
method to begin with.

6.3.2	 Asynchronous programming has more edge cases

Another problem is that by making your code asynchronous, you add new edge cases
and failure modes that just don’t exist in nonasynchronous single-threaded code. Let’s
take some straightforward WinForms code. We have a program that manages sources
that provide values, and this specific code chooses a random source and displays the
source name and the provided value (for extra realism, this code also uses the Win-
Forms editor’s autogenerated names):

private void button1_Click(object sender, EventArgs args)
{
 var source = GetRandomSource();
 label1.Text = source.Name;
 label2.Text = source.GetValue();
}

This code is pretty straightforward, and except for failures in the source itself, there’s
basically nothing that can go wrong. But if GetValue takes a long time to run, it will
make the UI unresponsive. We can solve this problem by making GetValue and this
method async. The changes to this method are minimal, and our UI will no longer
become unresponsive:

private async void button1_Click(object sender, EventArgs args)
{
 var source = GetRandomSource();
 label1.Text = source.Name;
 label2.Text = await source.GetValue();
}

This may look like an easy fix, but we introduced a bug. Now that the UI is not frozen
while GetValue is running, the user can click the button again, and if we are unlucky
with timing, it’s easy to encounter a situation where the code displays that the source
value is from the first click, while the source name is from the second, showing the user
incorrect information. To fix the problem, we need to at least disable the specific but-
ton while the code is running:

private async void button1_Click(object sender, EventArgs args)
{
 button1.Enabled=false;
 var source = GetRandomSource();
 label1.Text = source.Name;

	 79When to use async/await

 label2.Text = await source.GetValue();
 button1.Enabled=true;
}

Sometimes we might even have to disable all the UI controls in the application, depend-
ing on the details of the app and the dependencies between different UI elements.

6.3.3	 Multithreading has even more edge cases

The reason that the previous demo is using WinForms is that WinForms makes it easy
to write code that is asynchronous and not multithreaded. But nowadays, we mostly
don’t write desktop applications, and that innocent-looking await you added to the
code might have made your code multithreaded without even knowing it.

Multithreading has many pitfalls, so many that there’s an entire chapter about it later
in the book.

6.3.4	 async/await is expensive

async/await is expensive compared to single-threaded code. It adds a lot of compiler-
generated code and mechanisms required to make the code asynchronous. It’s
important to remember that this is compared to single-threaded code, and in most
cases, asynchronous code is more efficient than non-asynchronous multithreading,
even with all the overhead.

For example, let’s take this complete but useless C# program:

Thread.Sleep(1000);

What is the actual code that was generated for this program? To answer this question,
we’ll use IlSpy—a free program that can take a .NET-compiled program and reverse-
engineer it back to source code form. Because IlSpy looks at the compiled code, it sees
all the generated code we talked about in the previous chapters.

When we decompile our program, we get eight lines of code. One line is our original
line of code, and seven lines wrap our code in a Main method and a class (because while
the C# compiler lets you just write code, the runtime only supports code inside classes
and methods), and that’s it. If we take the equivalent asynchronous program

await Task.Delay(1000);

we get a whopping 63 lines of code. The compiler did what we talked about in chapter
3: it turned this line into a class implementing a state machine with two states (before
and after the await) with all the associated code to manage it.

So after discussing all those advantages and drawbacks, when should we use async/
await, and when should we avoid it?

6.4	 When to use async/await
Here are some simple guidelines that can help you decide when to use async/await
and when to opt for non-asynchronous blocking operations:

80 Chapter 6  When to use async/await

¡	If your code needs to manage a large number of connections simultaneously, use
async/await whenever you can.

¡	If you are using an async-only API, use async/await whenever you use that API.

¡	If you are writing a native UI application, and you have a problem with the UI
freezing, use async/await in the specific long-running code that makes the UI
freeze.

¡	If your code creates a thread per request/item, and a significant part of the run
time is I/O (for example, network or file access), consider using async/await.

¡	If you add code to a codebase that already uses async/await extensively, use
async/await where it makes sense to you.

¡	If you add code to a codebase that does not use async/await, avoid async/await
in the code as much as possible. If you decide to use async/await in the new
code, consider refactoring at least the code that calls the new code to also use
async/await.

¡	If you write code that only does one thing simultaneously, don’t use async/await.

¡	And in all other cases, absolutely and without a doubt, consider the trade-offs
and make your own judgement.

The list is sorted by importance, from the most important consideration to the least
important one. If your project fits the conditions of more than one of the listed guide-
lines, give more weight to the earlier entry in the list. But in any such case, or if the best
fit is that annoying last bullet, you really do need to weigh the trade-offs and decide for
yourself. I wish I could give you straightforward rules that cover every possibility, but
the truth is that software design is complicated, and there is no alternative to making
difficult choices based on the specific details of your specific project—after all, if soft-
ware development was that easy, you wouldn’t have to read books about it.

Summary
¡	Asynchronous code can handle a much higher load than non-asynchronous

code, while using significantly fewer resources.

¡	In cases where it’s important to run code on a specific thread (like in native UI
applications), async/await makes it easy to use multithreading and asynchro-
nous calls.

¡	However, asynchronous code also has some disadvantages:

–	 Code that calls asynchronous methods must be made asynchronous itself.

–	 Asynchronous code has more failure modes than non-asynchronous single
threaded code.

–	 Multithreaded code has more failure modes than single-threaded code.

–	 Asynchronous techniques require more code than non-asynchronous code
(but it’s still faster and more efficient than non-asynchronous multithreaded
code).

¡	You should consider the trade-offs when you choose whether to use async/await.

81

7Classic multithreading
pitfalls and how to

avoid them

This chapter covers

¡	Classic multithreading pitfalls: partial updates, 	
	 deadlocks, race conditions, synchronization, and 	
	 starvation
¡	Memory access reordering and the C# memory 	
	 model
¡	Following simple rules to avoid the classic
	 multithreading pitfalls

When transitioning from single-thread to multithreaded programming, it’s import-
ant to recognize that multithreading introduces certain types of bugs that don’t
occur in single-threaded applications. Fortunately, by understanding these common
bug categories, we can avoid them. This chapter contains straightforward guidelines
you can follow to significantly reduce the likelihood of encountering such problems.

We’ll start by examining the most fundamental multithreading side effect. In a
single-threaded environment, each piece of code must complete its task before the
next one can begin. However, when two pieces of code run simultaneously, one can

82 Chapter 7  Classic multithreading pitfalls and how to avoid them

access the data the other is still processing, leading to potential problems with incom-
plete work.

7.1	 Partial updates
Partial updates happen when one thread updates some data, and then, in the middle
of that update, another thread reads the data and sees a mix of the old and new values.

Sometimes, this problem is obvious, such as in

x = 5;
y = 7;

The first line sets x, and the second line sets y. There is a short time between those
lines when x has already been set to 5, but y is still not 7. However, often, the problem
is not so obvious. For example, the following method has only one assignment and still
has a potential partial updates problem:

void SetGuid(Guid src)
{
 _myGuid = src;
}

In this case, Guid is a struct, and while C# lets us copy a struct with a single assign-
ment operator, internally, the compiler will generate code to copy the members of the
struct one by one, thereby making this equivalent to the first code snippet.

But things can get worse. In the following code, we assign a decimal variable. decimal
is a basic type in .NET and not a struct. So how can this go wrong?

void SetPrice(decimal newPrice)
{
 _price = newPrice;
}

The problem here is that decimal is 128 bits long, and in 64-bit CPUs, memory access
is done in 64-bit–long blocks. So assigning a decimal variable is split into two dis-
tinct memory operations, basically making it exactly as problematic as the other two
examples.

However, decimal is kind of a weird basic type. It is a basic type in .NET, but it is not
natively supported in any CPU architecture I know of, so let’s talk about a basic type:
long. The long type is a 64-bit integer and is the most natively supported type in 64-bit
CPUs. We even said that memory access is done in 64-bit blocks, so assigning a single
long value should be safe, right?

void SetIndex(long newIndex)
{
 _index = newIndex;
}

	 83Partial updates

This assignment will most likely be atomic in 64-bit systems, but .NET still supports
32 bits, and if your code runs on a 32-bit computer (or a 32-bit operating system on a
64-bit CPU, or a 32-bit process running in a 64-bit OS—you get the point), then mem-
ory access is done in 32-bit blocks, and we’re facing the exact same problem.

The solution to all those problems is using a locking mechanism of some sort, and
the easiest locking mechanism in C# is the lock statement. For example, in the follow-
ing listing, we use lock statements in every access to a member variable (both reads and
writes), so we are completely safe from partial updates.

Listing 7.1  Using the lock statement

private int _x;
private int _y;
private object _lock = new object();

public void SetXY(int newX, int newY)
{
 lock(_lock)
 {
 _x = newX;
 _y = newY;
 }
}

public (int x, int y) GetXY()
{
 lock(_lock)
 {
 return (_x,_y);
 }
}

lock statements prevent more than one thread from running code that is inside the
lock’s code block simultaneously. If a thread reaches the lock statement, and another
thread is already running code in the code block of a lock statement, the first thread
will stop and wait until the other thread exits the block.

The lock statement accepts a parameter that lets us have different locks for different
variables. When reaching the lock statement, a thread will only wait if there is another
thread inside a lock statement with the same parameter. In the following listing, we
have two values named A and B. If you call both GetA and GetB at the same time from
different threads, one of them will run immediately, and the other will wait until the
first one exits the lock code block.

Listing 7.2  Single lock for two variables

private object _lock = new object();
private int _a;
private int _b;

lock statement
around writes

Another lock statement
around reads

84 Chapter 7  Classic multithreading pitfalls and how to avoid them

public int GetA()
{
 lock(_lock)
 {
 return _a;
 }
}

public int GetB()
{
 lock(_lock)
 {
 return _b;
 }
}

However, in the following example, because GetA uses _lockA and GetB uses _lockB,
they can run simultaneously and will only wait if called at the same time as another
piece of code that uses the lock statement with _lockA or _lockB, respectively.

Listing 7.3  Two locks for two variables

private object _lockA = new object();
private object _lockB = new object();
private int _a;
private int _b;

public int GetA()
{
 lock(_lockA)
 {
 return _a;
 }
}

public int GetB()
{
 lock(_lockB)
 {
 return _b;
 }
}

It is best practice to use a private member of type object (in .NET 9 and later, you
can also use an object of type Lock) that is only used for the lock statement and not
exposed anywhere outside your class. The reason for not exposing it outside your class
is that you don’t want to risk external code using the lock statement with the same
object because it can mess up your locking strategy and cause deadlocks (as we will see
later in this chapter). The reason for using an object of type object is that any other
class that actually does something might use lock(this) (this is common in older code

	 85Memory access reordering

from before using a private object became a best practice), thereby messing with your
locking strategy and causing a deadlock.

You may think that you can prevent partial updates by being careful about the order
of assignments, but this doesn’t work due to memory access reordering.

7.2	 Memory access reordering
In modern hardware architectures, accessing memory is painstakingly slow relative to
processing data inside the CPU, and different memory access patterns can have a sig-
nificant effect on performance. To help with better utilization of the hardware, the
compiler will change the order of operations in your code to reduce the number of
memory access operations and make memory access faster.

The computer I’m using right now for writing this book has 2.666Mhz DDR4 mem-
ory. This type of memory has a latency of about 14.5 nanoseconds (that is, 0.0000000145
seconds), but the computer has 12 virtual cores running at 2.66Ghz, which means each
clock cycle takes just 0.37 nanoseconds (to put this in perspective, by the time light
travels from the screen to your eye, each CPU core has already finished around seven
operations). A simple division tells us that each CPU core can perform roughly 40 oper-
ations in the time it takes to retrieve one value from memory, or considering the num-
ber of cores, the CPU can do up to 480 operations in the time it takes to get just one
value from memory (the real world is, of course, more complicated, and the amount of
work the CPU can do in a clock cycle can vary based on what exactly your code does; this
is the maximum value). To put this in human terms, if the CPU could do one operation
per second, then loading a single value from memory would take 8 minutes.

Let’s see a simple example of how the compiler can improve performance by moving
and eliminating memory access. Let’s take a simple loop that increments a variable 100
times:

int counter=0;
for(int i;i<100;++i)
{
 ++counter;
}

Now let’s translate this C# code into pseudo-machine code. In machine code, each
statement or expression is divided into instructions. Instructions that do calculations
can work only on internal variables inside the CPU itself. Those variables are called
registers, and there are a limited number of them. Loading a value from memory into a
register or storing the value of a register in memory are separate instructions. To keep
the results short and readable, we’re not going to translate the loop itself:

Set register to 0 (fast)
Store register to memory location "counter"(slow)
for(int i;i<100;++i)
{
 Load from memory location "counter" into register (slow)

86 Chapter 7  Classic multithreading pitfalls and how to avoid them

 Increment value of register (fast)
 Store register to memory location "counter"(slow)
}

When this pseudo-code runs, it will execute 101 fast and 201 slow operations (ignoring
the overhead of the for loop itself). Now let’s move the memory access outside the
loop:

Set register to 0 (fast)
Store register to memory location "counter" (slow)
Load from memory location "counter" into register (slow)
for(int i;i<100;++i)
{
 Increment value of register (fast)
}
Store register to memory location "counter" (slow)

This new pseudo-code will generate the exact same result but with only 4 slow oper-
ations compared to 201 in the direct translation. But we can do even better. At the
beginning, we are storing a variable and then immediately loading it. We can skip
those two operations and get

Set register to 0 (fast)
for(int i;i<100;++i)
{
 Increment value of register (fast)
}
Store register to memory location "counter" (slow)

And we’re at 101 fast operations and only 1 slow operation, down from 101 fast and 201
slow operations in the direct translation. If we say that each fast operation takes 1 time
unit and each slow operation takes 10 units, the direct translation would run in 2,111
time units, and the optimized version would only need 121 time units to do the same
work, which is a 20-fold improvement!

The general rule is that the compiler is allowed to make any changes that do not alter
the observed results of the code in a single-threaded environment; in our example, the only
result is the value of the counter variable at the end of the loop. In a single-threaded
environment, all our transformations did not change any observable results because
there is no other thread that can observe the value of counter in the middle of our
code. In a multithreading environment, the situation is different. In the original code,
another thread could have seen counter gradually increasing, while in the optimized
version, counter jumps directly to the final value.

Now let’s take the same logic and apply it to another piece of code. We will try to pre-
vent two threads from running the same block of code by using a flag that we set before
starting and resetting after we finish. Before entering the code, we will check the value
of this flag and stop if the flag is set:

	 87Memory access reordering

if(_doingSomething) return;
_doingSomething = true;
// do something
_doingSomething = false;

But when we exit this code, the _doingSomething flag will always be false, which
means that in a single-threaded environment, no one can ever observe the flag as true,
so this code is equivalent to

if(_doingSomething) return;
// do something
_doingSomething = false;

The compiler is free to move or remove the code that sets the flag, thereby com-
pletely eliminating our homemade thread synchronization. And we can see that opti-
mizing the code by making alterations that don’t change the results of the code in a
single-threaded environment might lead to results that are obviously nonsensical in a
multithreaded environment.

Things are even worse than that because access to the computer’s memory is so slow.
CPUs have smaller and faster (but still slower than the CPU’s processing) blocks of
memory built into the CPU. This is called cache memory. The CPU tries to load data from
the main memory into the cache before it is needed (in the background, while doing
other things), so when the instruction to load a value from memory is executed, the
value is already in the cache. Different cores may have their own cache memories.

All this together means code like

public void Init()
{
 _value = 7;
 _initialized = true;
}

does not guarantee that if _initialized is true, _value is set. The compiler is allowed
to swap the order of those assignments, and even if it doesn’t, your code might see an
outdated uninitialized version of _value simply because it was already in the cache.

If you read just the first paragraph of the C# volatile keyword, you may get the
(wrong) impression that it can solve this problem. However, the C# volatile semantics
are so complicated that it doesn’t guarantee access to the latest value and might cause
even more problems. Basically, don’t use volatile—it doesn’t do what you think it
does.

Obviously, it’s impossible to write correct multithreaded code when any memory
access can be moved or eliminated. That’s why we have tools to limit the way the system
moves memory access. There are operations that tell the system, “Don’t move reads
earlier than this.” This is called acquire semantics, and all the operations that acquire a
lock have this property. There are operations that tell the system “Don’t move writes
later than this point.” This is called release semantics, and all the operations that release

88 Chapter 7  Classic multithreading pitfalls and how to avoid them

a lock have this property. Figure 7.1 shows how acquire and release semantics affect the
system’s ability to move memory operations.

Entering a lock has acquire
semantics, so reading x
from memory cannot be
moved before this point.

Exiting a lock has release
semantics, so writing x to memory
cannot be moved after this point.

Reading x can happen
anywhere in this range.

Writing x can happen
anywhere in this range.

// some code
lock(_lock)
{
 // some more code
 if(x ==5)
 {
 x = 6;
 }
 // even more code
}

Figure 7.1  Acquire and release semantics

There are also operations that prevent the compiler from moving both reads and
writes across them in any direction. Those are called memory barriers. The set of rules of
exactly how the compiler and CPU are allowed to move memory access, in addition to
what operations have to acquire or release, or memory barrier semantics, is called the
memory model.

The important fact about memory reordering and the C# memory model is that if
you always use locks when accessing any data that is shared between threads, everything
just works. Acquiring a lock has acquire semantics and will give you the most up-to-date
values from memory. Releasing a lock has release semantics that will write all changes
back to memory, so they are available for the next thread that enters the lock. This also
brings us to the first rule for simple multithreading: always use a lock when accessing
shared data.

And now that we know we absolutely must use locks, we can talk about the most com-
mon problem with locks—deadlocks.

7.3	 Deadlocks
A deadlock, as we mentioned back in chapter 4, is a situation where a thread is stuck
waiting for a resource that will never become available because of something that the
same thread did. In the classic deadlock, one thread is holding resource A while wait-
ing for resource B at the same time that another thread is holding resource B while
waiting for resource A. At this point, both threads are stuck, each waiting for the other
one to complete. And that will never happen because the other one is also stuck, as
illustrated in figure 7.2.

	 89Deadlocks

First thread Second thread

Lock A

Lock B

Release B

Release A

Lock B

Lock A

Release A

Release B

waitin
g fo

rwaiting for

Both threads
are stuck here.

Figure 7.2  Simple deadlock between two threads

While this is the classic and most common deadlock, deadlocks can be and often are
more complicated. There can be any number of threads in a ring (thread 1 holding A
waiting for B, thread 2 holding B waiting for C, and thread 3 holding C waiting for A)
or even a single thread waiting for itself, which can happen when a thread is holding a
resource while trying to acquire that same resource again.

Some types of resources, like the lock statement or the Mutex class, will let the same
thread acquire them more than once (and you must release them the same number of
times as you acquired them). Those are called recursive locks. Other resources, like the
Semaphore class or files in exclusive access mode, will consider each attempt to acquire
them—even by the same thread—as a separate attempt and will block (causing a dead-
lock) or fail, depending on the actual resource.

Sometimes you can see the problem by just reading the code. For example, in the
following code, there are two methods, and one acquires locks in the reverse order of
the other one.

Listing 7.4  Code with a simple deadlock bug

public int Multiply()
{
 lock(_leftOperandLock)
 {
 lock(_rightOperandLock)
 {
 return _leftOperand * _rightOperand;
 }

lock left then right

90 Chapter 7  Classic multithreading pitfalls and how to avoid them

 }
}
public int Add()
{
 lock(_rightOperandLock)
 {
 lock(_leftOperandLock)
 {
 return _leftOperand * _rightOperand;
 }
 }
}

In this example, the person who wrote the Multiply method locked the left oper-
and first because you read math from left to right, and the person who wrote the Add
method locked the right operand first because they are right-handed. In each of the
methods, the order does not matter, but if you run the two methods simultaneously
and get unlucky with your timing, you get a deadlock.

This brings us to the second rule for easy multithreading: always acquire the locks in
the same order. The order itself doesn’t matter. You can painstakingly analyze the code
to deduce the optimal order, or you can always lock in alphabetical order—it doesn’t
matter. The point is to always lock in the same order. This is called lock hierarchy.

The following listing fixes the bug in the previous listing by defining a lock
hierarchy—locks are acquired in math-reading order, so _leftOperandLock is always
acquired before _rightOperandLock.

Listing 7.5  Solving the deadlock with lock hierarchy

public int Multiply()
{
 lock(_leftOperandLock)
 {
 lock(_rightOperandLock)
 {
 return _leftOperand * _rightOperand;
 }
 }
}
public int Add()
{
 lock(_leftOperandLock)
 {
 lock(_leftOperandLock)
 {
 return _leftOperand * _rightOperand;
 }
 }
}

It’s important to always keep the same lock order, even if we think we have a good rea-
son to change it. For example, let’s add a Divide method, and because division by zero

lock right then left

lock left and then right

Also lock left and then right

	 91Deadlocks

is not allowed in math, this method will check that the right operand is not zero before
dividing the numbers (if the second number is zero, it will invoke the DivideByZero
event). We might be tempted to lock and check the right operand before locking the
left operand because if the right operand is zero, we don’t need to access the left oper-
and at all.

Listing 7.6  Causing a deadlock by trying to avoid unnecessary locking

public int Divide()
{
 lock(_rightOperandLock)
 {
 if(_rightOperand==0)
 {
 DivideByZeroEvent?.Invoke(this,EventArgs.Empty);
 return 0
 }
 lock(_leftOperandLock)
 {
 return _leftOperand/_rightOperand;
 }
 }
}

In this code, while trying to avoid unnecessary locking, we broke the lock order by
locking the right operand before the left operand, thereby introducing a potential
deadlock. We must always keep the lock ordering, as in the following listing.

Listing 7.7  Correct lock order but with unnecessary locking

public int Divide()
{
 lock(_leftOperandLock)
 {
 lock(_rightOperandLock)
 {
 if(_rightOperand==0)
 {
 DivideByZeroEvent?.Invoke(this,EventArgs.Empty);
 return 0
 }
 return _leftOperand/_rightOperand;
 }
 }
}

In this listing, we kept the lock ordering, but if the right operand is zero, we acquire
the left operand lock without using it. This is bad because we could delay another
operation that needs the left operand. If we do not want to hold a lock we don’t need
(like in listing 7.7) and also do not want to risk getting into a deadlock (listing 7.6),

Locks right operand first (bug)

Only locks left
operand if needed

Locks left operand first,
even if we don’t need it

92 Chapter 7  Classic multithreading pitfalls and how to avoid them

then whenever we need to acquire a lock out of order, we have to release and reacquire
locks as needed to keep the order intact—and deal with the possibility that things have
changed because we released the lock. The correct way to write the previous listing
while avoiding unnecessary locking is as follows.

Listing 7.8  Correct lock order without unnecessary locking

public int Divide()
{
 lock(_rightOperandLock)
 {
 if(_rightOperand==0)
 {
 DivideByZeroEvent?.Invoke(this,EventArgs.Empty);
 return 0
 }
 }
 lock(_leftOperandLock)
 {
 lock(_rightOperandLock)
 {
 if(_rightOperand==0)
 {
 DivideByZeroEvent?.Invoke(this,EventArgs.Empty);
 return 0
 }
 return _leftOperand/_rightOperand;
 }
 }
}

In this code, we acquired the right operand lock and handled the case where the right
operand is zero. We then released the lock to acquire both locks in the correct order.
Next, we had to handle the case where the right operand is zero again because it could
have changed in that tiny period between when we released the right operand lock
and when we acquired it again. And only then could we finally do the calculation and
return the result.

But those were the easy cases. Sometimes, the deadlock is more difficult to find. The
previous two listings, the ones with the correct locking order, still have a potential dead-
lock bug. Let’s take a look at this code again (we’ll use the shorter and simpler code
from listing 7.7).

Listing 7.9  Correct lock ordering but still a potential deadlock

public int Divide()
{
 lock(_leftOperandLock)
 {
 lock(_rightOperandLock)
 {

Locks only the
right operand

If the right operand
is zero, the method
ends here.

Releases lock and reacquires
in the correct order

Rechecks
condition because
it could have
changed while the
lock was released

	 93Deadlocks

 if(_rightOperand==0)
 {
 DivideByZero?.Invoke(this,EventArgs.Empty);
 return 0
 }
 return _leftOperand/_rightOperand;
 }
 }
}

This code acquires both locks in the correct order, and then, if the second operand is
zero, it invokes the DivideByZero event; otherwise, it divides the first operand by the
second and returns the result. The problem is in the call to the DivideByZero event
handler. The code in that event is outside our control. It could be written by someone
from a different organization and could do different things in different applications.
This code could, for example, have locks of its own.

Listing 7.10  Code that triggers the deadlock bug in listing 7.9

public void SomeMethod()
{
 lock(_outputLock)
 {
 Console.WriteLine(_numbers.Add());
 }
}

Private void Numbers_DivideByZeroEvent(object sender, EventArgs ea)
{
 lock(_outputLock)
 {
 Console.WriteLine("Divide by zero");
 }
}

This code acquires a lock to call the Add method from listing 7.5 and acquires the same
lock if it is called by the Divide method from listing 7.9. By itself, this code looks cor-
rect, just like our Divide method that also by itself looks correct.

But if one thread calls SomeMethod while another thread tries to use Divide to
divide by zero, we might get a deadlock. The first thread acquires a lock on _output-
Lock (in SomeMethod) first and then tries to acquire _leftOperandLock and _right
OperandLock (inside Add), while the second thread acquires _leftOperandLock
and _rightOperandLock (inside Divide) and then tries to acquire _outputLock (in
Numbers_DivideByZeroEvent).

The first thread is holding _outputLock while waiting for _leftOperandLock and
_rightOperandLock, while the second thread is holding _leftOperandLock and
_rightOperandLock while waiting for _outputLock. This is the exact same problem
we’ve seen before, only now it’s spread out over multiple files and is more difficult to
debug.

94 Chapter 7  Classic multithreading pitfalls and how to avoid them

This brings us to the third rule: never call code that is not under your control while
holding a lock. When you need to call any code that is not under your control, you must
call it after releasing the locks. For example, the current way to write the code from list-
ing 7.9 is as follows.

Listing 7.11  Solving the event deadlock bug

public int Divide()
{
 lock(_leftOperandLock)
 {
 lock(_rightOperandLock)
 {
 if(_rightOperand!=0)
 {
 return _leftOperand/_rightOperand;
 }
 }
 }
 DivideByZero?.Invoke(this,EventArgs.Empty);
 return 0
}

With this version, instead of checking whether the right operand is zero and invoking
the event, we check whether the right operand is not zero and perform the calculation.
This means that if we get to the code at the end of the method, after we release all the
locks, the operand is zero, and at this point, it’s safe to invoke events.

You might think we can solve the problem by never holding more than one lock at
the same time, but that can lead to race conditions.

7.4	 Race conditions
A race condition is a situation where the result of the code is dependent on uncontrolla-
ble timing events. For example, let’s say someone “fixed” the Add method from earlier
to only hold one lock at a time, and that same developer also added a SetOperands
method to set the two operands using the same locking strategy.

Listing 7.12  Holding just one lock at a time

public int Add()
{
 int leftCopy,rightCopy;
 lock(_leftOperandLock)
 {
 leftCopy = _leftOperand;
 }
 lock(_rightOperandLock)
 {
 rightCopy = _rightOperand;
 }

Reverses the condition

If the right operand is not
zero, the method ends here.

Calls the event
outside the lock

	 95Race conditions

 return rightCopy + leftCopy;
}

public int SetOperands(int left, int right)
{
 lock(_leftOperandLock)
 {
 _leftOperand = left;
 }
 lock(_rightOperandLock)
 {
 _rightOperand = right;
 }
}

In the Add method, this code acquires a lock for both operands one at a time, copies
the value to a local variable, and then immediately releases the lock. Likewise, in the
SetOperands method, the code acquires one lock, sets the values, and then releases
the lock before repeating this for the second operand. Because the code never tries
to acquire a lock while holding another, it is completely deadlock proof. However,
together, those two methods present a new problem. If those two methods are called at
exactly the same time, we can’t be sure in what order the four lock statements will exe-
cute. If we are lucky, the two blocks from the same thread will execute together—let’s
call those situations the “good options” (figure 7.3).

Thread 1 calls Add() at the same time that thread 2 calls SetOperands(1,2).
The initial value for both operands was 0.

Thread 1
Add()

Thread 2
SetOperands(1,2)

Set left
(Set 1)

Read left
(Read 0)

Set Right
(Set 2)

Read right
(Read 0)

Thread 1
Add()

Thread 2
SetOperands(1,2)

Set left
(Set 1)

Read left
(Read 1)

Set right
(Set 2)

Read right
(Read 2)

Good option 2: Old resultGood option 1: New result

Result = 0
(Outdated result)

Result = 3
(Up-to-date result)

Figure 7.3  Locking operations ordering with correct results

96 Chapter 7  Classic multithreading pitfalls and how to avoid them

In option 1, we get the correct result; we set the new values and then immediately use
them. In option 2, we get an outdated result, but it’s only outdated by less than a mil-
lisecond, so I’m going to call this a correct result too. Usually, it is okay to produce a
result that is just a little bit outdated (the acceptable value of “a little bit” varies greatly
between projects), and it’s exceptionally difficult to guarantee that the results are never
outdated because of physics. If you look out the window and see that there is light out-
side, it only tells you that the sun existed 8 minutes ago (it takes the light from the sun
about 8 minutes to get to the earth). It’s possible (but, very fortunately for us, extremely
unlikely) that during the last 8 minutes, the sun exploded, and we just don’t know it yet.

Because we can get different results based on tiny thread scheduling differences, this
is already a race condition. But it gets worse because the operation from the two threads
can interleave in any way. It’s also possible the two operations from one thread will run
between the operations from the other thread. Then we get the situation shown in fig-
ure 7.4.

Thread 1 calls Add() at the same time thread 2 calls SetOperands(1,2).
The initial value for both operands was 0.

Thread 1
Add()

Thread 2
SetOperands(1,2)

Set left
(Set 1)

Read left
(Read 1)

Set right
(Set 2)

Read right
(Read 0)

Bad option 1

Result = 1
(Incorrect result)

Bad option 2

Result = 2
(Incorrect result)

Thread 1
Add()

Thread 2
SetOperands(1,2)

Set left
(Set 1)

Set right
(Set 2)

Read right
(Read 2)

Read left
(Read 0)

Figure 7.4  Locking operations ordering with incorrect results

In those two options, we clearly get incorrect results. What happened is that because
we used separate short locks, we managed to get the results of a partial update despite
using locks. This is due to the unfortunate fact that composing several thread-safe
operations together does not necessarily result in a thread-safe operation—each of the
two locks is individually thread safe, but two locks in succession are likely to introduce
race conditions.

	 97Synchronization

And this brings us to the fourth rule: you must hold locks for the entire operation.
In case you are now screaming, “No, you must hold locks only for the absolute minimal
duration!” you are right and should keep reading because holding a lock for too long is
likely to cause synchronization.

7.5	 Synchronization
Synchronization is the situation when operations happen sequentially and not in paral-
lel. To demonstrate, let’s revisit listing 4.11 for a quick recap of our adventure in chap-
ter 4. We wrote a program that counts from 0 to 10 million. To count faster, we created
two threads, each counting to five million. But then we didn’t get the correct result
because of the partial update problem that we talked about in chapter 4 and in more
detail at the beginning of this chapter. After we fixed the problem by adding locks, we
got the following.

Listing 7. 13  Multithreaded counting to 10 million

public void GetCorrectValue()
{
 int theValue = 0;
 object theLock = new Object();

 var threads = new Thread[2];
 for(int i=0;i<2;++i)
 {
 threads[i] = new Thread(()=>
 {
 for(int j=0;j<5000000;++j)
 {
 lock(theLock)
 {
 ++theValue;
 }
 }
 });
 threads[i].Start();
 }

 foreach(var current in threads)
 {
 current.Join();
 }
 Console.WriteLine(theValue);
}

This code creates two threads, and each increments a value five million times. To avoid
the partial updates problem we talked about at the beginning of this chapter, the code
uses a lock while incrementing the value. But there is still a problem with this code. We
use two threads so we can increase performance, but because of the locks around the
actual incrementing operations, the incrementing itself happens sequentially and not
in parallel. Figure 7.5 is a diagram showing how the code runs.

98 Chapter 7  Classic multithreading pitfalls and how to avoid them

The first bar shows what would
happen if we just built this code as a
single-threaded program: we would have
a single thread that starts, counts to 10
million, and then exits. The second two
bars look like what we wanted to happen:
two threads each doing half the work—
finishing the same work in about half
the time. The last two columns are what
actually happened: we did divide the
work between two threads, but whenever
one of the threads is doing useful work,
the other has to wait, resulting in no real
parallelism and slower speed than the
single-threaded case (because of thread
synchronization overhead).

This brings us to the fifth rule for
easy multithreading: to avoid synchro-
nization, we need to hold locks for the
shortest time possible, preferably just for the time it takes to access the shared resource,
and not for the duration of the entire operation. You may think that this rule conflicts
with the previous one, that “hold locks for the minimum duration, and not for an entire
operation” somehow contradicts “hold locks for the entire operation.” And if that is
what you think, you are absolutely right. If our locks are too short, we risk race condi-
tions, and if our locks are too long, we get synchronization.

We should try to aim for the happy middle ground where the locks are long enough
to prevent race conditions but short enough to avoid synchronization. But this happy
middle ground doesn’t always exist. There are situations where reducing the lock’s
duration to anything that doesn’t cause synchronization will cause race conditions. In
those cases, you should remember that synchronization may hurt performance, but
race conditions will produce incorrect and unexpected results. So prefer synchroniza-
tion to race conditions.

Synchronization is bad if we intend to do things in parallel and synchronize them
unintentionally, but it is actually desirable in some other cases. For example, in bank-
ing, it’s generally frowned upon if money is transferred twice just because two wire
transfer instructions arrived simultaneously. To avoid this situation, the international
banking system (which is a highly decentralized digital distributed system run by thou-
sands of different independent organizations around the world) synchronizes access to
your bank account. Whenever you look at your bank account or credit card transaction
history, you will see a sequence of transactions where each transaction ends before the
next one begins.

Single-threaded
version

What we
wanted

What we
got

Figure 7.5  Not getting performance gains from
multithreading due to synchronization

	 99Starvation

Even if two credit card transactions started at the exact same time at two shops in
different countries, and each shop used a different payment processor and a different
bank (much more parallel than different threads in the same computer can ever be),
the system will still synchronize them into an ordered sequence and act like one of them
started after the other completed.

When you want to synchronize operations, you can use locks like in the counting
example we’ve just seen, or you can use one of the other more advanced strategies we
will discuss in the next chapter. In cases when synchronization is not desired, when
parallel operations become sequential unintentionally and reduce the performance of
the system, two or more threads need exclusive access to the same shared resource (usu-
ally a lock) to do their work, so the threads alternate between themselves. Each thread
acquires the resource, does a little bit of work, and releases it. However, sometimes the
one thread might hold that resource for a very long time, preventing another thread
from working at all. This is called starvation.

7.6	 Starvation
Starvation is the situation when one thread or a group of threads monopolizes access
to some resource, never letting another thread or group of threads do any work. For
example, the following program will create two threads, with each thread acquiring
a lock and writing a character in the console (the first thread is a minus sign and the
second thread is an x) in an infinite loop.

Listing 7.14  Starvation due to locking

using System.Diagnostics;

var theLock = new object();
var thread1 = new Thread(() =>
{
 lock(theLock)
 {
 while (true)
 {
 Console.Write("-");
 }
 }
});
thread1.Start();

var thread2 = new Thread(() =>
{
 while (true)
 {
 lock (theLock)
 {
 Console.Write("x");
 }
 }
});
thread2.Start();

100 Chapter 7  Classic multithreading pitfalls and how to avoid them

The first thread acquires the lock before entering the loop and releases it after the loop
(because it’s an infinite loop, that means never), while the second thread acquires and
releases the lock for each character written to the console. If we run this program, we
will see it writes only minus signs because the first thread holds the lock for the dura-
tion of the program, and the second thread never gets a chance to acquire the lock.

This brings us back to the fifth rule: hold locks for the shortest duration possible.
When we talked about this rule before, we said that holding a lock for too long can lead
to synchronization. Now we see that in extreme cases, we get starvation when we hold a
lock for way too long.

Starvation is also often caused by some threads monopolizing other resources—
often the CPU. If you have high-priority threads that do not block, they might prevent
lower-priority threads from running. For example, this program creates two threads:
the first thread writes minus signs to the console in an infinite loop, and the second
write x characters. I’ve bumped the second thread’s priority to AboveNormal and made
the whole program use just the first CPU core (because otherwise, we’d have to cre-
ate enough threads to saturate all cores and risk making your computer unresponsive
when you run this program). This is called processor affinity.

Listing 7.15  Starvation due to thread priority

using System.Diagnostics;

Process.GetCurrentProcess().ProcessorAffinity = new IntPtr(1);

var thread1 = new Thread(() =>
{
 while (true)
 {
 Console.Write("-");
 }
});
thread1.Start();

var thread2 = new Thread(() =>
{
 while (true)
 {
 Console.Write("x");
 }
});
thread2.Priority = ThreadPriority.AboveNormal;
thread2.Start();

If we run this program on Windows, we will get a screen full of x characters with a sin-
gle minus thrown in every once in a while. This happens because of an anti-starvation
mechanism Microsoft added to the Windows thread scheduler. On Linux, we will see
roughly the same number of x characters and minuses because by default, Linux does
not allow changing the thread priority.

Runs only on the
first CPU core

Increases thread priority

	 101Summary

Running this program on those two operating systems shows the two sides of the
problem with changing the threads’ or processes’ priority and affinity:

¡	The Windows example showed us that even a tiny bump in a single thread’s prior-
ity can significantly limit the processing power that other threads can use.

¡	The Linux example showed us that priority and affinity sometimes don’t work
like we expect them to.

And this gives us the final rule for easy multithreading: don’t change priority or proces-
sor affinity.

Now that we have covered the most common multithreading mistakes and know how
to avoid them, it’s time to talk about different strategies for writing multithreaded code.

Summary

¡	The compiler and CPU may reorder or even eliminate memory access operation
(as long as the result of your code doesn’t change in a single-threaded environ-
ment). You can’t count on other threads seeing the state that is consistent with
the code you wrote unless you use locks. So always use a lock when accessing
shared data.

¡	Always acquire the locks in the same order; that is called lock hierarchy.

¡	Never call code that is not under your control while holding a lock.

¡	Composing several thread-safe operations together rarely results in a thread-safe
operation.

¡	Hold locks for entire operations.

¡	Hold locks for the shortest possible duration.

¡	The last two bullet points contradict each other. If you hold locks for too long,
you might get synchronization. If your locks are not long enough, you get race
conditions. Try to find something in the middle. If you can’t do it, opt for longer
locks because race conditions are typically worse than synchronization.

¡	Synchronization is sometimes desirable. There are operations you want to per-
form sequentially, even when most of the system can work in parallel.

¡	Don’t change the thread’s and processes’ priority or processor affinity.

Part 2

Advanced uses of async/await
and multithreading

Now that you know all about async/await and multithreading, it’s time to
dive deeper and understand that there’s much more to multithreading and asyn-
chronous programming than the await keyword and Task.Run.

Part 2 discusses different ways to process data in the background (chapter 8)
and then explains how to cancel background processing (chapter 9). Next, you
will learn how to build complex asynchronous components (chapter 10) and
how to customize async/await’s threading behavior (chapter 11). We’ll have a
short discussion about the complexity of exceptions in asynchronous program-
ming (chapter 12) and talk about thread-safe collections (chapter 13). In the final
chapter, we’ll talk about how to write our own asynchronous collection-like com-
ponents (chapter 14).

By the end of part 2 (and the book), you should have everything you need to
understand and develop multithreaded applications. You will know how all the
parts work and how to combine them.

105

8Processing a sequence
of items in the

background

This chapter covers

¡	Processing items in parallel
¡	Performance characteristics of different ways to 	
	 run code in parallel
¡	Processing items sequentially in the background
¡	Background processing of important jobs

There are three primary reasons for using multithreading in everyday applications.
The first, and the most common, is when an application server needs to manage
requests from multiple clients simultaneously. Typically, this is handled by the
framework we use, such as ASP.NET, and it is beyond our control. The other two rea-
sons for using multithreading are to finish processing sooner by performing parts
of the processing in parallel and to push some tasks to be run later in the back-
ground. Both of these can significantly improve your program performance (or, at
least, responsiveness and perceived performance). Let’s begin by discussing the first
reason: completing our processing faster.

106 Chapter 8  Processing a sequence of items in the background

8.1	 Processing items in parallel
To demonstrate parallel processing, we will write the world’s simplest mail merge
software. Mail merge is a process that takes a mail template and creates an individual
customized message for each recipient by replacing tokens in the template with infor-
mation about the recipient.

Listing 8.1  World’s simplest mail merge

void MailMerge(
 string from,
 string subject,
 string text,
 (string email,string name)[] recipients)
{
 var sender = new SmtpClient("smtp.example.com");
 foreach(var current in recipients)
 {
 try
 {
 var message = new MailMessage();
 message.From = new MailAddress(from);
 message.Subject = subject;
 message.To.Add(new MailAddress(current.email));
 message.Body = text.Replace("{name}", current.name);
 sender.Send(message);
 }
 catch
 {
 LogFailure(current.email);
 }
 }
}

This method accepts the sender’s e-mail address, the mail subject line, the e-mail tem-
plate text, and a list of recipients’ names and addresses. It then replaces the token
{name} for each recipient with the recipient’s name and sends the message. If there’s
an error, we just log it and continue (in real code, sending an e-mail can fail for many
reasons, many of them being transient, so we’ll usually have some retry logic).

Note that, due to constant abuse by spammers, e-mail service providers are very strict
about enforcing their terms of use. If you need to send e-mail from your program, make
sure you comply with your provider’s terms and consider using a transactional e-mail–
sending service instead of your regular e-mail service provider. I highly recommend
you never write code that sends e-mail in a loop unless you’ve cleared it with your e-mail
service provider.

If we use this method in a web application, we will quickly run into an issue: sending
an e-mail is slow and can take up to several seconds per message. The typical timeout for
a web request is 30 seconds. That means we will start timing out and not returning the
results to the user at somewhere between 10 and 40 messages, and this is a really small
number of messages for anything that requires automated mail merge.

Loops over all
recipients

Replaces token
with value

Sends message

	 107Processing items in parallel

8.1.1	 Processing items in parallel with the Thread class

We don’t have time to wait for all the messages to be sent sequentially, so the obvious
solution is to just send all the messages in parallel. That way, we only have to wait for as
long as it takes to send the longest message. To parallelize this, we can use any of the
options we talked about in chapter 4, for example, the Thread class.

Listing 8.2  Mail merge with a thread per message

 void MailMerge(
 string from,
 string subject,
 string text,
 (string email,string name)[] recipients)
{
 var processingThreads = new Thread[recipients.Length];
 for(int i=0;i< recipients.Length;++i)
 {
 processingThreads[i] = new Thread(()=>
 {
 try
 {
 var sender = new SmtpClient("smtp.example.com");
 var message = new MailMessage();
 message.From = new MailAddress(from);
 message.Subject = subject;
 message.To.Add(new MailAddress(recipients[i].email));
 message.Body = text.Replace("{name}", recipients[i].name);
 sender.Send(message);
 }
 catch
 {
 LogFailure(current.email);
 }
 });
 processingThreads[i].Start();
 }
 foreach(var current in processingThreads)
 {
 current.Join();
 }
}

In this code, we create a thread for every message we want to send, run all those threads
in parallel, and then wait for all those threads to finish.

This can work just fine, but it does have a few weaknesses—most obviously, there is
no limit to the number of threads this code can create. For example, if we have 10 simul-
taneous users, and each sends 100 messages (and those are not big numbers), this code
is going to create 1,000 threads, and we don’t know how that will affect our program’s
performance. But we can write a small program to estimate that effect.

Sends each message
in its own thread

Waits for all threads
to complete

108 Chapter 8  Processing a sequence of items in the background

Listing 8.3  Thread-per-message performance benchmark

for (int j = 0; j < 5; ++j)
{
 var sw = Stopwatch.StartNew();

 var threads = new Thread[1000];
 for (int i = 0; i < 1000; i++)
 {
 threads[i] = new Thread(() => Thread.Sleep(1000));
 threads[i].Start();
 }
 foreach (var current in threads)
 current.Join();
 sw.Stop();
 Console.WriteLine(sw.ElapsedMilliseconds);
}

This program creates 1,000 threads, where each thread just sleeps for 1 second. We
repeat this five times just to make sure we didn’t get an incorrect number because of
something that isn’t related to our code running simultaneously.

When running in release configuration and without a debugger, my laptop outputs
between 1.1 and 1.2 seconds for each iteration. This shows us that with a modern com-
puter, the overhead of 1,000 threads is acceptable for our program.

If we increase the number of threads to 10,000, the output will be just over 2 seconds,
and if we go to 100,000 threads, it will be between 15 and 20 seconds, and that is in a
program that does nothing. In a real server, things are likely to be worse because the
server needs to actually do useful work and not just play around with threads, so please
don’t create a huge number of threads and assume the overhead will be negligible.

Note that if you run the program under a debugger, you will get significantly worst
results because the debugger monitors thread creation and destruction. When I ran the
program under a debugger, it took 14 seconds instead of just 1.2—be careful with your
performance tests!

8.1.2	 Processing items in parallel with the thread pool

Creating an arbitrarily large number of threads inside our server process seems bad.
Fortunately for us, the thread pool was designed exactly for this situation. Let’s move
our message processing to the thread pool. We could use ThreadPool.QueueUser-
WorkItem to run our code in the thread pool, but then we will have to write our own
mechanism for detecting when all the threads finish sending the message. Writing this
code isn’t that difficult, but it’s even easier to not write it, and Microsoft has been nice
enough to include this feature in Task.Run.

Listing 8.4  Mail merge with each message processed in the thread pool

void MailMerge(
 string from,
 string subject,

	 109Processing items in parallel

 string text,
 (string email,string name)[] recipients)
{
 var processingTasks = new Task[recipients.Length];
 for(int i=0;i< recipients.Length;++i)
 {
 processingTasks[i] = Task.Run(()=>
 {
 try
 {
 var sender = new SmtpClient("smtp.example.com");
 var message = new MailMessage();
 message.From = new MailAddress(from);
 message.Subject = subject;
 message.To.Add(new MailAddress(recipients[i].email));
 message.Body = text.Replace("{name}", recipients[i].name);
 sender.Send(message);
 }
 catch
 {
 LogFailure(current.email);
 }
 });
 }
 Task.WaitAll(processingTasks);
}

This is almost the same code as that in listing 8.2. We just replaced new Thread with
Task.Run, removed the call to Thread.Start, and changed the Join loop at the end to
a single call to Task.WaitAll.

This will solve the problem of potentially creating a huge number of threads. The
thread pool will limit the number of threads to a sane number the system can handle,
and there’s no longer any thread creation and destruction overhead. However, we do
introduce the possibility of oversaturating the thread pool. If we try to send the same
1,000 messages from the previous example, we will tie up the thread pool until all those
messages are sent, and in the meantime, anything else that uses the thread pool (like
ASP.NET, for example) will have to wait. That means our server might stop processing
web requests if we try to send too many messages.

Let’s modify our performance test program and see how switching to the thread
pool improves our performance.

Listing 8.5  Thread pool performance benchmark

for (int j = 0; j < 5; ++j)
{
 var sw = Stopwatch.StartNew();

 var tasks = new Task[1000];
 for (int i = 0; i < 1000; i++)
 {
 tasks[i] = Task.Run(() => Thread.Sleep(1000));

Uses Task.Run to run
in the thread pool

Waits for all threads
to finish

110 Chapter 8  Processing a sequence of items in the background

 }
 Task.WaitAll(tasks);
 sw.Stop();
 Console.WriteLine(sw.ElapsedMilliseconds);
}

Here we just took our code from listing 8.3 and made the same changes to switch from
dedicated threads to the thread pool.

When I ran this performance test, I got 69 seconds for the first iteration, 37 for the
second, 27 for the third, 23 for the fourth, and 20 seconds for the fifth and final iter-
ation. What does this tell us? First, obviously, we completely overwhelmed the thread
pool, and this version took 60 times longer to run compared to the previous one. But
there’s something weird in the results: each iteration is faster than the previous one.
The reason for this is that the thread pool is always automatically optimizing the num-
ber of threads, and it will continue to become faster with every iteration. This means
that while this is unacceptably slow for a program that does something that rarely
requires a lot of threads, in a system that continuously uses a large number of threads,
this will run very well.

If we are writing a program that we know will require a large number of thread pool
threads, we can just tell the system about it and not wait for the automatic optimiza-
tions. If we tell the thread pool, we will require 1,000 worker threads by using the follow-
ing two lines of code:

ThreadPool.GetMinThreads(out _, out var completionPortThreads);
ThreadPool.SetMinThreads(1000, completionPortThreads);

The first iteration will be just as fast as using the Thread class, and subsequent itera-
tions will be faster, averaging 1,025 milliseconds on my computer.

8.1.3	 Asynchronously processing items in parallel

In the previous example, we overwhelmed the thread pool because we added too many
long-running work items, and there were not enough available threads to process
them. In our case, the threads are long running because we used blocking operations.
If those work items were doing calculations, the thread pool wouldn’t have been slower
than any other options because we would have been limited by the number of CPU
cores. But our program is spending most of its time just waiting for the server and
doing nothing. All those thread pool threads are just blocked and doing nothing. We
already said that this is the exact situation where asynchronous techniques shine, so
let’s make our mail merge asynchronous.

Listing 8.6  Asynchronous mail merge using Task.Run

void MailMerge(
 string from,
 string subject,
 string text,

	 111Processing items in parallel

 (string email,string name)[] recipients)
{
 var processingTasks = new Task[recipients.Length];
 for(int i=0;i< recipients.Length;++i)
 {
 processingTasks[i] = Task.Run(async ()=>
 {
 try
 {
 var sender = new SmtpClient("smtp.example.com");
 var message = new MailMessage();
 message.From = new MailAddress(from);
 message.Subject = subject;
 message.To.Add(new MailAddress(recipients[i].email));
 message.Body = text.Replace("{name}", recipients[i].name);
 await sender.SendMailAsync(message);
 }
 catch
 {
 LogFailure(current.email);
 }
 });
 }
 Task.WaitAll(processingTasks);
}

We only had to make two tiny changes to the code from listing 6.4. We added the
async keyword and switched from using Send to SendMailAsync awaiting the result
(the async version of Send is called SendMailAsync and not SendAsync because that
name was already taken by an older method that predates async/await).

And, of course, we are also going to update our performance test to be asynchro-
nous. This only requires changing ()=>Thread.Sleep(1000) to async ()=> await Task
.Delay(1000).

Listing 8.7  Asynchronous performance benchmark

for (int j = 0; j < 5; ++j)
{
 var sw = Stopwatch.StartNew();

 var tasks = new Task[1000];
 for (int i = 0; i < 1000; i++)
 {
 tasks[i] = Task.Run(async () => await Task.Delay(1000));
 }
 Task.WaitAll(tasks);
 sw.Stop();
 Console.WriteLine(sw.ElapsedMilliseconds);
}

How is this going to affect performance? Running this code, I got results between
1,001 and 1,017 milliseconds, which means that here, the thread pool has virtually no

Added async

Added await

112 Chapter 8  Processing a sequence of items in the background

overhead. It’s important to remember that in the mail merge program, the code will
spend most of its time waiting, but in our performance test, it spends all of its time wait-
ing, so those results do not perfectly translate to the real program (I already said you
need to be careful with your performance tests).

8.1.4	 The Parallel class

In all the samples so far, we wrote a loop that created threads or added items to the
thread pool. We then collected the Thread or Task objects so we could wait until they
were all completed. This is tedious and exactly the kind of boilerplate code we don’t like
to write. Luckily, the .NET library has the Parallel class that can do all of this for us.

The Parallel class has four static methods:

¡	Invoke—Takes an array of delegates and executes all of them, potentially in par-
allel. This method returns after all the delegates finish running.

¡	For—Acts like a for loop, but iterations happen in parallel. It will return after all
the iterations finish running.

¡	ForEach—Acts like a foreach loop, but iterations happen in parallel. It will
return after all the iterations finish running.

¡	ForEachAsync—Similar to ForEach, but the loop body is an async method. It will
return immediately and return a Task that will complete when all the iterations
finish running.

In this chapter, we talk about Parallel.ForEach and Parallel.ForEachAsync because
they are useful for our mail merge example. Internally, Invoke and For use the same
code as ForEach. Here is what that code will look like if we use the Parallel class.

Listing 8.8  Mail merge with the Parallel class

void MailMerge(
 string from,
 string subject,
 string text,
 (string email,string name)[] recipients)
{
 var processingTasks = new Task[recipients.Length];
 Parallel.ForEach(recipients,
 (current,_) =>
 {
 try
 {
 var sender = new SmtpClient("smtp.example.com");
 var message = new MailMessage();
 message.From = new MailAddress(from);
 message.Subject = subject;
 message.To.Add(new MailAddress(current.email));
 message.Body = text.Replace("{name}", current.name);
 sender.Send(message);
 }

	 113Processing items in parallel

 catch
 {
 LogFailure(current.email);
 }
 }).Wait();
}

We can see that this code looks closer to the original nonmultithreaded code from
listing 8.1. Basically, we swapped foreach for Parallel.ForEach, which made our code
run in parallel. The ignored parameter is a cancellation token. We will talk about those
in the next chapter.

The Parallel class also supports cancellation, setting a scheduler, and controlling
the maximum number of items we process simultaneously. Cancellation is easy to
implement ourselves, and we will talk about it in the next chapter. Using schedulers is
also widely supported, and we will talk about it in chapter 11. Controlling the maximum
number of items processed in parallel is not easily available elsewhere and is, surpris-
ingly, the biggest pitfall of using the Parallel class. If we migrate our performance test
to use Parallel.ForEach, we get the following.

Listing 8.9  Parallel.ForEach performance benchmark

for (int j = 0; j < 5; ++j)
{
 var items = Enumerable.Range(0, 1000).ToArray();
 var sw = Stopwatch.StartNew();
 Parallel.ForEach(items,
 (item)=>Thread.Sleep(1000));
 sw.Stop();
 Console.WriteLine(sw.ElapsedMilliseconds);
}

In this version of the performance test, we create an array of numbers from 0 to 999
and use Parallel.ForEach to iterate over them, waiting 1 second for each item. I fully
expected this code to have exactly the same performance characteristics as when using
Task.Run in listing 8.5 because it’s a different syntax for doing exactly the same thing.
But when I ran it, I was surprised. The first iteration took 48 seconds—faster than the
almost 70 seconds we got using Task.Run. However, all subsequent iterations took 31
seconds, which was faster than the first two iterations with Task.Run but slower than
the third iteration and later.

What happened here is that contrary to what is explicitly written in the documen-
tation, Parallel.ForEach by default limits the number of items processed in parallel,
so it didn’t quite overwhelm the thread pool as much as our Task.Run code did. How-
ever, because of that, the thread pool self-optimization didn’t create so many threads
in response to our unreasonable load, and that is why later iterations are slower with
Parallel.ForEach.

We can test this theory by setting the max number of items to be processed in parallel
to a high number, by replacing the Parallel.ForEach line with

114 Chapter 8  Processing a sequence of items in the background

Parallel.ForEach(items,
 new ParallelOptions { MaxDegreeOfParallelism = 1000 },
 (item)=>Thread.Sleep(1000));

If we do that and set MaxDegreeOfParallelism to the length of the list (thereby telling
it to process everything simultaneously), we do get the exact same performance char-
acteristics we got with Task.Run in listing 8.5. This is in contradiction to the official
documentation that clearly states that the default behavior is to use all threads and
that setting MaxDegreeOfParallelism can only reduce but never increase the number
of threads used. This means Parallel.ForEach works very well for shorter collections
and when the thread pool didn’t have a chance to create a lot of threads already.

Note that whenever we find that the observed behavior contradicts the documented
behavior, we have a problem. Obviously, we can’t rely on the documented behav-
ior because that’s not how the system actually works. But it’s also risky to rely on the
observed behavior because any update can fix the bug and make the system work as
documented. We need to either write code that works well with both the documented
behavior and the observed behavior or take the risk that we will need to issue as emer-
gency update if this ever gets fixed in the future.

In the previous examples that used Task.Run, we got an enormous speed boost when
we switched from blocking operations (listings 8.4 and 8.5) to asynchronous operations
(listings 8.6 and 8.7). Unfortunately, this doesn’t happen when switching from Parallel
.ForEach to its async/await compatible counterpart Parallel.ForEachAsync. Unlike
Parallel.ForEach, the default MaxDegreeOfParallelism is, according to the docu-
mentation, the number of cores, and this is logically and theoretically the most efficient
number of threads for asynchronous code. However, here is the problem: Parallel
.ForEachAsync uses this as the number of items that are processed at the same time and
not the number of threads.

For example, our code waits asynchronously for 1 second 1,000 times, and my laptop
has 12 cores, so Parallel.ForEachAsync will start working on the first 12 items. They
will all take exactly 1 second to complete, and it will then start working on the next 12,
for a total run time of 84 seconds (because 1,000 divided by 12 rounded up is 84).

This behavior is problematic, and unless it’s changed in a future version of .NET, I
would recommend avoiding Parallel.ForEachAsync or, if you have to use it, choosing
a good value for MaxDegreeOfParallelism.

For completeness, here is a version of the code with Parallel.ForEachAsync.

Listing 8.10  Asyncronous mail merge with the Parallel class

void MailMerge(
 string from,
 string subject,
 string text,
 (string email,string name)[] recipients)
{
 var processingTasks = new Task[recipients.Length];

	 115Processing items sequentially in the background

 Parallel.ForEachAsync(recipients,
 new ParallelOptions {
 MaxDegreeOfParallelism= recipients.Length
 },
 async (current,_) =>
 {
 try
 {
 var sender = new SmtpClient("smtp.example.com");
 var message = new MailMessage();
 message.From = new MailAddress(from);
 message.Subject = subject;
 message.To.Add(new MailAddress(current.email));
 message.Body = text.Replace("{name}", current.name);
 await sender.SendMailAsync(message);
 }
 catch
 {
 LogFailure(current.email);
 }
 }).Wait();
}

In this code, we made the following changes:

¡	We made the loop body lambda async, switched from Send to SendMailAsync,
and awaited it (like the changes we made when we converted the Task.Run exam-
ple to async in listing 8.6).

¡	We used Task.Wait() on the task returned from Parallel.ForEachAsync to wait
until all the processing completes (in listing 8.6, we used Task.WaitAll for the
same purpose).

¡	And finally, we set MaxDegreeOfParallelism to the length of the list. This is prob-
ably not the optimal value, but it’s much better than the default.

8.2	 Processing items sequentially in the background
In all the preceding examples, we always waited until all the messages were sent, but we
didn’t do anything with the result of the sending operation. We could have just moved
the sending operation to a background thread and returned a reply to the user imme-
diately without waiting for the result. Basically, if we don’t wait for all the messages to
be sent, we don’t care how long it takes to send them.

If we just move the entire e-mail sending loop to a background thread, we solve all
our performance problems. And, as a bonus, we are also nicer to our e-mail service pro-
vider because we don’t try to send an unreasonable number of messages simultaneously.

8.2.1	 Processing items sequentially in the background with the Thread class

Way back at the beginning of the chapter, when we started running things in parallel in
listing 8.2, the first thing we used was the Thread class, so it only seems fitting that the
first thing we use here is also the Thread class.

Uses Parallel.ForEach

Don’t forget
MaxDegreeOfParallelism.

Makes the loop body
lambda async

Awaits the async
version of Send

At the end, waits until
all threads complete

116 Chapter 8  Processing a sequence of items in the background

Listing 8.11  Moving the entire loop to a background thread

void MailMerge(
 string from,
 string subject,
 string text,
 (string email,string name)[] recipients)
{
 var processingThread = new Thread(()=>
 {
 var sender = new SmtpClient("smtp.example.com");
 foreach(var current in recipients)
 {
 Try
 {
 var message = new MailMessage();
 message.From = new MailAddress(from);
 message.Subject = subject;
 message.To.Add(new MailAddress(current.email));
 message.Body = text.Replace("{name}", current.name);
 sender.Send(message);
 }
 catch
 {
 LogFailure(current.email);
 }
 });
 processingThread.Start();
 }
}

This code is very similar to listing 8.2. Basically, the only difference is that we create our
thread outside the loop instead of inside. We still don’t have a limit on the number of
threads this code can create, but it’s now one per request and not one per message, so
the performance implications should really be negligible.

It’s important to note that if we try to exit our program normally (which never hap-
pens in ASP.NET applications but does happen in the command line and native UI
apps), the program will not exit until the thread finishes sending all the messages. This
can be an advantage or a disadvantage, depending on the situation. If we want the pro-
gram to exit without waiting for the thread, we can set the thread’s IsBackground prop-
erty to true.

Spinning up a new thread to run some process in the background is useful in
single-user applications, such as native UI apps, because we only need to run work
in the background occasionally, and if the app does produce too many threads and
overwhelms the CPU, the only person that suffers from the degraded performance is
the user who made the app do it. This is not true for servers. In servers (and other
multiuser scenarios), we tend to have to manage sustained load and prevent any single
user from overwhelming the system. That is why in servers we need to better control the
number of threads, and for this, we will usually use the work queue pattern.

Creates thread here

Instead of here

	 117Processing items sequentially in the background

8.2.2	 The work queue pattern and BlockingCollection

If we no longer care about the time it takes to send the messages, it’s better to just
use one thread, or a small, fixed number of threads, that will send everything. This
is called the work queue pattern and is implemented by creating a queue where every
thread can add items to the queue, and there is a dedicated set of threads that pro-
cesses all the items. Those threads just have a loop that reads the next item from the
queue and handles it. To keep the code simple, we’ll have just one processing thread
in our example.

There are a surprisingly large number of tiny details you must get right when build-
ing this queue, but Microsoft has been nice enough to do most of the work for us with
the BlockingCollection<T> class.

BlockingCollection<T> can be used in multiple ways. For example, it can be
used as a thread-safe List<T>. But the interesting scenario is when we use Blocking
Collection<T> as a work queue. In this case, there are only three methods we care
about:

¡	Add—Unsurprisingly, adds a new item to the end of the queue.

¡	CompleteAdding—Indicates that we will not add any more items, and the thread
that is processing the items can exit after it finishes with items already in the
queue.

¡	GetConsumingEnumerable—Returns an object that can be used with a foreach
loop to iterate over all the items in the queue. If the queue is empty, foreach
will block until another item is added to the queue or CompleteAdding is called.
When CompleteAdding is called, the enumerable will indicate that there are no
more items, and the foreach loop will exit.

Because this is a bit longer than the previous examples, I’ve written it as a class and not
as a method. We’ll start with the class definition, a record to store all the information
we need to store in the queue and the BlockingCollection queue itself.

Listing 8.12  Work queue with BlockingCollection

public class MailMerger
{
 private record MailInfo(
 string from,
 string subject,
 string text,
 string email);

 BlockingCollection<MailInfo> _queue = new();

Now we need to create a thread to process the queue (the code to run in that thread is
in the BackgroundThread):

 public void Start()
 {

118 Chapter 8  Processing a sequence of items in the background

 var thread = new Thread(BackgroundProc);
 thread.Start();
 }

We will also add a way to close the background thread, so we should add a method that
calls CompleteAdding; that will cause the background thread to exit once everything in
the queue is already handled:

 public void Stop()
 {
 _queue.CompleteAdding();
 }

Now we add a method that acts like the MailMerge from the previous code listings. In
this example, this method only adds to the queue and doesn’t actually send the mail.
We run the mail merge loop here and add the individually prepared messages to the
queue. Preparing the messages before inserting them into or after reading them from
the queue doesn’t make any difference here, but it is important for persistent queues
(we will talk about that in just a few paragraphs):

 public void MailMerge(
 string from,
 string subject,
 string text,
 (string email, string name)[] recipients)
 {
 foreach(var current in recipients)
 {
 _queue.Add(new MailInfo(
 from,
 subject,
 text.Replace("{name}", current.name),
 current.email));
 }
 }

And finally, the part you’ve all been waiting for—the code that runs in the background
thread and sends this message. This method is somewhat anticlimactic. It just uses
foreach on the return value of the BlockingCollections.GetConsumingEnumerable
and sends the message:

 private void BackgroundProc()
 {
 var sender = new SmtpClient("smtp.example.com");
 foreach (var current in _queue.GetConsumingEnumerable())
 {
 try
 {
 var message = new MailMessage();
 message.From = new MailAddress(current.from);

	 119Processing items sequentially in the background

 message.Subject = current.subject;
 message.To.Add(new MailAddress(current.email));
 message.Body = current.text.Replace("{name}", current.name);
 sender.Send(message);
 }
 catch
 {
 LogFailure(current.email);
 }
 }
 }

}

This is a complete work queue implementation of our mail merge feature. We used
the Thread class because this is a very long-running thread—probably it will run for
the entire run time of the program—and using the thread pool will just use up one of
the thread pool threads without giving us the benefit of being able to reuse that thread
for something else after we finish with it (because we will never finish with it). We saw
back in chapter 5 that the Thread class doesn’t work well with asynchronous code, but
BlockingCollection is not asynchronous and does not have an asynchronous version
that does not block. You will see how we can build one in chapter 10.

BlockingCollection is stored only in memory, meaning that if the process crashes
or exists in any other way (including if the computer is rebooted or someone pulls the
power cord), all unprocessed items that are still in the queue will be lost. This makes
it suitable only for “best effort” work (the system will try to do the work, but it can fail
unexpectedly for any reason). If you need a more reliable work queue implementation,
you need to use persistent queues.

8.2.3	 Processing important items with persistent queues

In all the previous samples, if the process crashes (and in some of them, even if the
process exists normally), all the messages that are still pending would be lost. In many
cases, this is unacceptable. For those situations, we will use persistent queues (also
called durable queues).

Persistent queues are simply queues stored on disk and not in memory, so they are
not lost if the program crashes. You can write your own queue by just storing the items
in a database table, or you can use a separate queues server. If you are running in a
cloud environment, your cloud provider probably has a cheap and easy-to-use queue-
ing service you can use (AWS has SQS, and Azure has storage queues). Another com-
mon option is the free RabbitMQ server. However, how exactly to use Azure, AWS, or
RabbitMQ is outside the scope of this book.

When you use a persistent queue, reading the next item from the queue and remov-
ing it can be separate operations. This is important because it lets us select what hap-
pens when there’s a failure.

The first option is to remove the item from the queue after we finish processing it. In
this case, if a stray cat pulls the power cord out of the wall right after we finish processing

120 Chapter 8  Processing a sequence of items in the background

but before we remove the item, then after the computer restarts, we won’t know that
we already processed this item, and we will process it again. This is called “at-least-once
delivery.”

The second option is to remove the item from the queue before we process it. In
this case, if a good dog wags his tail because he is happy to see us and hits the power
switch after we remove the item from the queue but before we process it, then after the
computer restarts, the item will not be in the queue and will never be processed. This is
called “at-most-once delivery.”

What we really want is to guarantee each item will be processed once and only once.
This is called “exactly once delivery” and, unfortunately, is usually impossible. For exam-
ple, in our mail merge program, even if our queue supports exactly one delivery, if we
lose connection to the mail server after we finished sending the message but before we
got the confirmation from the server, we have no way of knowing whether the message
was sent. And that brings us back to the same situation where we must either risk send-
ing the message twice or risk not sending it at all.

In almost all cases, losing data is worse than processing it twice, and we will opt for
at least one delivery. But if we opt for at least one delivery, and there is a message in the
queue that causes our program to crash, we will be stuck in an infinite loop where the
program starts, reads the first item from the queue, crashes while trying to process it,
restarts, and repeats the whole process. That is why it’s important to have something
that monitors the processing code for failure (this can be as simple as a try-catch block
around the processing code), and if processing fails repeatedly for the same message,
removes this message from the queue.

Messages that always cause code to crash are called poison messages, and the best prac-
tice is to save them somewhere (often in another persistent queue) so we can inspect
the message and find the bug that caused the crash. Queues that store those messages,
as well as messages that weren’t processed for other reasons, are often referred to as
dead letter queues.

It’s also important to think about failures when we design the items that we store in
the queue. This is why the last example in listing 8.12 prepared the messages before
adding them to the queue. That way, a failure to process an item will only affect one
message and not all the messages in our mail merge operation.

Summary

¡	If you have work items that are processed individually, you can make the process-
ing finish faster by processing the items in parallel.

¡	You can use the Thread class for parallel processing. This works well but can be
resource intensive.

¡	You can use the thread pool using ThreadPool.QueueUserWorkItem or Task.Run.
The thread pool is efficient and self-tuning. But it can take a while to get to peak
performance if you throw a lot of work at it all at once. This can be mitigated by

	 121Summary

changing the thread pool settings if you know in advance the number of threads
you will need.

¡	The thread pool is especially efficient with asynchronous code.

¡	The Parallel class is a simpler syntax to use the thread pool, but if you use it
on a large collection, you should use a performance test to get a good value for
MaxDegreeOfParallelism.

¡	If you don’t care how much time it takes to finish the operation but just want
to free the current thread, you can process work items sequentially in the
background.

¡	You can use the Thread class or the thread pool. Both options will work.

¡	However, a better option is to use the work queue pattern, probably with the
BlockingCollection class.

¡	If you don’t want to lose data when the program crashes, you should use a per-
sistent queue. You can implement one yourself using a database or use a dedi-
cated queue solution such as RabbitMQ, AWS SQS, or Azure Storage Queues.

¡	With persistent queues, you should consider whether you want an “at-least-once
delivery” or an “at-most-once delivery” system. You should also handle poison
messages.

122

9Canceling
background tasks

This chapter covers

¡	Canceling operations
¡	The CancellationToken and Cancellation-	
	 TokenSource classes
¡	Implementing timeouts
¡	Combining cancellation sources

In the previous chapter, we talked about how to run stuff in the background. In this
chapter, we are going to talk about how to make it stop. The .NET library provides a
standard mechanism for signaling that a background operation should end, which
is called CancellationToken. The CancellationToken class is used consistently for
(almost) all cancelable operations in the .NET library itself and in most third-party
libraries.

9.1	 Introducing CancellationToken
For this chapter, we need an example of a long-running operation we can cancel.
So let’s write a short program that will count for the longest time possible—forever.

	 123Introducing CancellationToken

Listing 9.1  Running a background thread forever

var thread = new Thread(BackgroundProc);
thread.Start();
Console.ReadKey();

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 Console.WriteLine(i++);
 }
}

This program starts a thread that counts forever. It then waits for the user to press any
key, and when the user finally does so, nothing happens. The program won’t end until
the second thread stops, and because we didn’t write any mechanism that will make it
stop, this program will continue forever, or more correctly, until you use some external
means to terminate the entire process (you can use Task Manager, the taskkill com-
mand, debugger, hitting Ctrl-C, rebooting the entire machine, etc.)

The easiest way to make the program terminate is to mark the thread as a background
thread. A process terminates when the last thread that is not marked as a background thread
terminates, so we can make the program exit when the user hits a key by simply adding
this line before the call to Thread.Start:

thread.IsBackground = true;

While this can solve the problem in some cases, it has two major drawbacks:

¡	You can only use this technique to cancel an operation when you completely exit
your program.

¡	This will stop the background thread in the middle of whatever it was doing with-
out giving it a chance to complete an operation or save its state (however, it will
not leave your program in an unstable state because the program is no longer
running).

The first problem alone already makes this unsuitable for most scenarios. When we
look for a way to stop a thread without closing the entire program, we can see that the
Thread class has a method named Abort that seems promising. However, that method
still suffers from the second problem. It’s actually worse than the previous example
because terminating a thread in the middle of whatever it was doing can leave the
entire program in an inconsistent state if that process, for instance, was allocating
memory and updating the memory manager internal data structures.

This makes Abort too dangerous to use, so dangerous that Microsoft made it not
work anymore in .NET Core and .NET 5 and later (it now just throws a PlatformNot-
SupportedException on all platforms).

124 Chapter 9  Canceling background tasks

So with no built-in way to stop a thread, we have no choice but to code something
ourselves. Let’s start with the simplest possible option, just a flag that tells us when to
stop the thread.

Listing 9.2  Using a flag to cancel a background thread

var thread = new Thread(BackgroundProc);
bool isCancellationRequested = false;
thread.Start();
Console.ReadKey();
isCancellationRequested = true;

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 if(isCancellationRequested) return;
 Console.WriteLine(i++);
 }
}

This option works in the current version of .NET and on current hardware, but it isn’t
guaranteed to work. As we talked about in chapter 7, high-end CPUs can have per-core
cache, and when the main thread sets the flag, it actually updates its own core’s cached
version. Likewise, when the background thread checks the flag, it might be reading
from a different core’s cached version. On your development machine, you’ll typically
have a smaller number of cores and a lot of programs running (such as your develop-
ment environment and a web browser), so the CPU cores need to switch threads and
processes often, and this problem will never surface. But if you then run your software
on a high-end server with many CPU cores and a smaller number of processes, the can-
cellation might be delayed because setting the flag won’t propagate to the background
thread until both cores flush their cache.

In addition, as also discussed chapter 7, the compiler is allowed to rewrite your code
to make it run faster as long as it does not change the result of the code in a single-
threaded environment. And in a single-threaded environment, the flag can’t change
during the loop, so it’s safe to remove the check. This problem is especially difficult
to debug because it tends to happen only in release builds (debug builds are usually
not optimized) and can appear only in some environments; thus, the code can run
perfectly fine on your development machine and fail on the production server. It can
even run on the server today but start failing when something on the server is upgraded
in the future.

The solution, as we’ve also seen in chapter 7, is to use locks when accessing the flag.
There are better and faster ways to protect access to a single bool variable, but I’m going
to use the lock statement for simplicity. Don’t worry. We will change it to something
better in the next code listing.

Flags variable

Sets flag to exit

If a flag is set, exit.

	 125Introducing CancellationToken

Listing 9.3  Using locks to protect the cancellation flag

var thread = new Thread(BackgroundProc);
var cancelLock = new object();
bool isCancellationRequested = false;
thread.Start();
Console.ReadKey();
lock(cancelLock)
{
 isCancellationRequested = true;
}

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 lock(cancelLock)
 {
 if(isCancellationRequested) return;
 }
 Console.WriteLine(i++);
 }
}

We just took the previous example and wrapped all access to the flag with lock state-
ments. Now we have a thread-safe, future-proof way to cancel the background thread.
But we created a maintainability problem. It’s just a matter of time until some future
team member forgets to add a lock and introduces a bug that only happens in produc-
tion under load. This is bad, but fortunately for us, object-oriented programming already
solved this problem more than 50 years ago (object-oriented programming was first for-
malized in 1967): just write a class that encapsulates the flag and controls all access to it.

Listing 9.4  Wrapping the cancel flag in a class

public class CancelFlag
{
 private bool _isCancellationRequested;
 private object _lock = new();

 public void Cancel()
 {
 lock(_lock)
 {
 _isCancellationRequested = true;
 }
 }

 public bool IsCancellationRequested
 {
 get
 {

Locks when
setting the flag

Locks when
checking the flag

126 Chapter 9  Canceling background tasks

 lock(_lock)
 {
 return _isCancellationRequested;
 }
 }
 }
}

This class is about as simple as it can get: there’s a Cancel method that lets you set the
cancel flag and an IsCancellationRequested property that lets you check the value of
the cancel flag. Inside each of those, access to the flag is protected by locks.

Now we just need to change our program to use the CancelFlag class:

var thread = new Thread(BackgroundProc);
var shouldCancel = new CancelFlag();
thread.Start();
Console.ReadKey();
shouldCancel.Cancel();

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 if(shouldCancel. IsCancellationRequested) return;
 Console.WriteLine(i++);
 }
}

We have now created a thread-safe, future-proof, and maintainable way to cancel the
background thread. But—and you know there has to be a but because we’re not even
close to the end of the chapter—the CancelFlag API has a weak point. It’s easy to
abuse the CancelFlag and use it in a way that will have unexpected effects on other
parts of the program. For example, if we add another background thread that some-
times needs to cancel itself, it might look something like this:

void SomeOtherBackgroundProcesses()
{
 int i=0;
 while(true)
 {
 if(shouldCancel. IsCancellationRequested) return;
 Console.WriteLine(i++);
 if(i==7) shouldCancel.Cancel();
 }
}

This is a method similar to BackgroundProc from the previous example that has an
additional exit condition, and the developer noticed there is already a way to stop the
thread (our cancel flag), so they used it. This works for this method, but it also has the

Creates cancel flag

Sets cancel flag

Checks cancel flag

Uses the cancel flag
to cancel itself

	 127Introducing CancellationToken

side effect of canceling the other background thread simply because both threads are
using the same flag, which is probably not what we want. We can fix this shortcoming
by splitting our CancelFlag into two classes: one lets us set the cancel flag, while the
other can only check it. We then get an API that looks like

class CancelFlag
{
 public bool IsCancellationRequested {get;}
}
class CancelFlagSource
{
 public void Cancel();
 public CancelFlag Flag {get;}
}

We separated the interface into two classes: the CancelFlagSource creates and con-
trols the CancelFlag, and the CancelFlag is only used for checking if cancellation was
requested. Code that may cancel the operation uses CancelFlagSource, while code
that can be canceled only gets the CancelFlag. If we change the program to use our
new cancel flag interface, we get the following.

 Listing 9.5  Using CancelFlag and CancelFlagSource

var thread = new Thread(BackgroundProc);
var cancelFlagSource = new CancellationFlagSource();
var shouldCancel = cancelFlagSource.Flag;
thread.Start();
Console.ReadKey();
cancelFlagSource.Cancel();

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 if(shouldCancel. IsCancellationRequested) return;
 Console.WriteLine(i++);
 }
}

There is one important thing missing in this example: we didn’t implement the
CancelFlagSource and CancelFlag classes. But that’s okay because Microsoft has done
all the work and implemented the CancellationToken and CancellationTokenSource
classes that do everything we talked about and more. Here’s how our program looks
when we use CancellationToken.

Listing 9.6  Using CancellationToken

var thread = new Thread(BackgroundProc);
var cancelTokenSource = new CancellationTokenSource();

Creates flag source

Gets flag for
background thread

Sets flag

Checks whether
flag was set

Creates
CancellationTokenSource

128 Chapter 9  Canceling background tasks

var shouldCancel = cancelTokenSource.Token;
thread.Start();
Console.ReadKey();
cancelTokenSource.Cancel();

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 if(shouldCancel. IsCancellationRequested) return;
 Console.WriteLine(i++);
 }
}

This is exactly the same code as in listing 9.5. I just replaced CancelFlag with
CancellationToken.

It’s important to remember that at its core, CancellationToken is just a bool variable
(wrapped in a thread-safe, future-proof, abuse-resistant class); there’s nothing magic
about it, and it doesn’t know by itself how to cancel anything. If our previous program
did something time consuming in the loop instead of Console.WriteLine (for exam-
ple, a calculation that takes 1 full minute), the thread cancellation will be delayed until
that long calculation completes.

Listing 9.7  Delayed cancellation with a long operation

var thread = new Thread(BackgroundProc);
var cancelTokenSource = new CancellationTokenSource();
var shouldCancel = cancelTokenSource.Token;
thread.Start();
Console.ReadKey();
cancelTokenSource.Cancel();

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 if(shouldCancel.IsCancellationRequested) return;
 ACalculationThatTakesOneMinute();
 Console.WriteLine(i++);
 }
}

void ACalculationThatTakesOneMinute()
{
 var result = 0;
 var start = DateTime.UtcNow;
 while((DateTime.UtcNow - start).TotalMinutes < 1)
 {
 result++;
 }
}

Gets token for
background thread

Cancels token

Checks whether
token was canceled

For 1 full minute

Calculates stuff

	 129Introducing CancellationToken

In this code, the background thread main loop, which does the cancellation checking,
calls another long-running method. That means that we wait until this method returns
before the next cancellation check, and because the time between cancellation checks
is 1 minute in this example, it would take between 0 and 1 minute (or 30 seconds on
average) from the time we cancel the background thread until it finally terminates.

If you do anything time-consuming inside the loop, you either have to accept that can-
celing may take a while or change the long-running code to check the Cancellation
Token periodically. For example, we can modify our previous example to check for
cancellation inside ACalculationThatTakesOneMinute.

Listing 9.8  Using CancellationToken with a long operation

var thread = new Thread(BackgroundProc);
var cancelTokenSource = new CancellationTokenSource();
var shouldCancel = cancelTokenSource.Token;
thread.Start();
Console.ReadKey();
cancelTokenSource.Cancel();

void BackgroundProc()
{
 int i=0;
 while(true)
 {
 if(!ACalculationThatTakesOneMinute(cancelTokenSource.Token))
 return;
 Console.WriteLine(i++);
 }
}

bool ACalculationThatTakesOneMinute(CancellationToken shouldCancel)
{
 var start = DateTime.UtcNow;
 var result = 0;
 while((DateTime.UtcNow - start).TotalMinutes < 1)
 {
 if(shouldCancel.IsCancellationRequested)
 return false;
 result++;
 }
 return true;
}

In this code, we moved the cancellation check into the ACalculationThatTakesOne
Minute method and changed it to return bool where true means the method has com-
pleted successfully, and false means it has been canceled. This is required because
most of the time in a real program, it’s useful to know whether the calculation has
completed, and we can use the result or not.

Inner cancellation
check

130 Chapter 9  Canceling background tasks

9.2	 Canceling using an exception
In our previous examples, we moved the cancellation check into the ACalculation-
ThatTakesOneMinute method. This means calling the method changed from the nice
and straightforward

ACalculationThatTakesOneMinute();

to the more convoluted

if(!ACalculationThatTakesOneMinute()) return;

This doesn’t only clutter our code with ifs, but it also creates a maintenance risk
because someone in the future might change the code and forget to add the if. It also
uses up the method return value, so if our method needs to return a value, we must use
tuples or out parameters.

We can solve all those problems by using an exception. We can solve those problems
if we replace our cancellation check that returns false on cancellation from

 if(shouldCancel.IsCancellationRequested)
 return false;

with a very similar code that throws an exception

 if(shouldCancel.IsCancellationRequested)
 throw new OperationCanceledException();

This is so common that Microsoft has provided a method that does just that, and the
cancellation check becomes just

 shouldCancel.ThrowIfCancellationRequested();

In all the examples so far, the background operations we wanted to cancel were some
kind of calculations, a piece of code that is doing some work, and we can embed the
cancellation check inside that work. But what if we want to cancel an operation that we
can’t insert cancellation checks into?

9.3	 Getting a callback when the caller cancels our operation
Let’s say we have a library that has its own cancellation system not based on
CancellationToken. For example, it can have an interface that looks like

class MyCalculation
{
 void Start();
 void Cancel();
 event Action Complete;
}

	 131Implementing timeouts

With this interface, in normal operation, we call Start and wait for the Complete
event. If we want to cancel an ongoing operation, we call the Cancel method. We some-
times find interfaces like those in code that calls remote servers, code that uses some
non-.NET libraries, or more rarely, in third-party libraries written by someone who just
for whatever reason doesn’t like CancellationToken.

We can add another background thread that just repeatedly checks the status
of CancellationToken and calls MyCalculation.Cancel when IsCancellation
Requested becomes true, but this is obviously wasteful. That is why CancellationToken
can call a callback when it is canceled. That way, using the example MyCalculation class
is easy:

void RunMyCalculation(CancellationToken cancel)
{
 var calc = new MyCaclulation();
 cancel.Register(()=>calc.Cancel());
 calc.Complete += CalcComplete();
 calc.Start();
}

The CancellationToken.Register method is used to register the callback we want the
CancellationToken to call when it is canceled. Calling Register multiple times will
cause all callbacks to run when the CancellationToken is canceled. Calling Register
when the CancellationToken is already canceled will run the callback immediately.
Register returns an object that can be used to unregister the callback.

Note that the callback you pass to Register will run in the thread calling Cancel and
not in the background thread you are trying to cancel. Make sure everything you do
in the callback is thread safe and avoid doing things that can interfere with the calling
thread.

9.4	 Implementing timeouts
A very common scenario for cancellation is the timeout, where we want to cancel an
operation if it hasn’t completed in a certain time. For example, if we tried to open a
network connection, and we didn’t get a reply, we can’t tell if we didn’t get an answer
because the network packet hasn’t reached us yet or because the computer we are try-
ing to connect to doesn’t exist. So we wait for a certain time, and if we don’t get a reply
by then, we assume that the reply will never arrive and cancel the operation.

It would have been easy to write code that starts a timer and calls the Cancellation-
TokenSource.Cancel when the timer elapses, but because this is such a common sce-
nario, CancellationTokenSource already has this feature built in with the CancelAfter
method. The CancelAfter method has two overrides, one that accepts the number of
milliseconds to wait

var cancelSource = new CancellationTokenSource();
cancelSource.CancelAfter(30000);

Registers a callback

132 Chapter 9  Canceling background tasks

and the nicer, more modern override that accepts a TimeSpan:

var cancelSource = new CancellationTokenSource();
cancelSource.CancelAfter(TimeSpan.FromSeconds(30));

Both of those code snippets create a CancellationToken (accessible as cancelSource
 .Token) that will cancel automatically after 30 seconds.

Calling CancelAfter when the CancellationToken is already canceled does noth-
ing. Calling CancelAfter a second time, before the CancellationToken is canceled,
will reset the timer. Calling CancelAfter(-1) before the CancellationToken is can-
celed will cancel the timeout.

9.5	 Combining cancellation methods
Sometimes you want to be able to cancel an operation for two completely different
reasons. For example, let’s say you have code that can be canceled by the user, and you
want to add a timeout. For this example, we’ll write code that performs an HTTP GET
request to a server and returns the result as a string.

Listing 9.9  HTTP call that can be canceled by the user

public async Task<string>
 GetTextFromServer(CancellationToken canceledByUser)
{
 using(var http = new HttpClient())
 {
 return await http.GetStringAsync("http://example.com",
 canceledByUser);
 }
}

This method accepts a CancellationToken called canceledByUser, unsurprisingly
indicating that the operation was canceled by the user. We now want to add a time-
out, but we can’t because we need a CancellationTokenSource, and we only have a
CancellationToken.

The CancellationTokenSource.CreateLinkedTokenSource static method can cre-
ate a CancellationTokenSource from one or more CancellationToken objects. We
can then use the new CancellationTokenSource to create a CancellationToken we
control and add the timeout to it.

Listing 9.10  HTTP call that can be canceled by the user or a timeout

public async Task<string>
 GetTextFromServer(CancellationToken canceledByUser)
{
 var combined = CancellationTokenSource.CreateLinkedTokenSource(
 canceledByUser);
 combined.CancelAfter(TimeSpan.FromSeconds(10));
 using(var http = new HttpClient())

Creates a
CancellationTokenSource

we control

Adds timeout

	 133Summary

 {
 return await http.GetStringAsync("http://example.com",
 combined.Token);
 }
}

You can pass any number of CancellationToken objects to CreateLinkedToken-
Source; the token controlled by the new CancellationTokenSource will be canceled
automatically if any of them are canceled. You can then use the new Cancellation-
TokenSource to add a timeout or manually cancel its token. Anything you do with the
new CancellationTokenSource will not affect the tokens used to create it.

9.6	 Special cancellation tokens
We spent this entire chapter talking about how to use a CancellationToken to cancel an
operation; however, sometimes, while you don’t need to be able to cancel an operation,
the API you are using still requires a CancellationToken. In those cases, you can just
pass CancellationToken.None. This will give you a CancellationToken that can never
be canceled. Creating a CancellationToken with new CancellationToken(false) will
give you the same results but is less readable.

In contrast, new CancellationToken(true) will create a CancellationToken that is
already canceled. This doesn’t make much sense in normal code but can be useful in
unit tests.

Summary

¡	CancellationToken is the standard way to cancel operations in .NET.

¡	The CancellationTokenSource class is used to create and control Cancellation
Token objects.

¡	CancellationTokenSource.Cancel is used to cancel an operation, and
CancellationToken.IsCancellationRequired is used to check whether it has
been canceled.

¡	CancellationToken is just a flag. It doesn’t know how to cancel anything by itself.

¡	You can use CancellationToken.Register to run a callback when it canceled.

¡	You can use CancellationTokenSource.CancelAfter to implement timeouts.

¡	CancellationTokenSource.CreateLinkedTokenSource lets you create a
CancellationTokenSource you control from one or more existing
CancellationToken objects.

¡	When you need to pass a CancellationToken that you never want to cancel, you
can use CancellationToken.None.

Uses new token

134

10Await your own events

This chapter covers

¡	Creating Task objects that you can control
¡	TaskCompletionSource and 			
	 TaskCompletionSource<T>

¡	Completing a Task successfully and with an error, 	
	 and canceling a Task
¡	Adapting old and nonstandard asynchronous APIs 	
	 to use tasks
¡	Using TaskCompletionSource to implement 	
	 asynchronous initialization
¡	Using TaskCompletionSource to implement 	
	 asynchronous data structures

Until now, we’ve talked about using async/await to consume asynchronous APIs.
In this chapter, we’ll talk about writing your own asynchronous APIs. Common rea-
sons for doing so include adapting a non-Task–based asynchronous API so that it
can be used with await, using await to asynchronously wait for events that happen

	 135Introducing TaskCompletionSource

in your application, or creating an async/await-compatible thread-safe data structure,
just to give a few examples. (Spoiler: We will write code for those examples later in this
chapter.)

Way back in chapter 3, to understand how the async and await keywords work, we
took a method that used async/await and transformed it into an equivalent method
that produces exactly the same asynchronous operation but doesn’t use async and
await. Back then, we didn’t know how to create Task objects, but we did know that
await can be implemented by a callback (specifically, Task.ContinueWith). So instead
of a Task, we used callbacks to report the operation results. To make this change, we
modified the method signature from

Task<int> GetBitmapWidth(string path)

to

void GetBitmapWidth(string path,
 Action<int> setResult,
 Action<Exception> setException)

ContinueWith, the .NET built in callback mechanism, uses a single callback that must
check the Task for information regarding the success and failure of the asynchronous
operation. However, we choose to use separate setResult and setException callbacks
for the success and failure cases because it’s simpler. As a byproduct, by successfully
simulating a Task with those two calls, we showed that those setResult and set
Exception calls are (if we have a way to connect them to a Task) sufficient to control it.

Surprise! The .NET library has a class named TaskCompletionSource<T>. It can cre-
ate Task<T> objects and has methods named SetResult and SetException. Let’s see
how you can use it.

10.1	 Introducing TaskCompletionSource
The .NET library has the TaskCompletionSource class to create and control Task
objects and the TaskCompletionSource<T> class to create and control Task<T> objects.
TaskCompletionSource and TaskCompletionSource<T> are exactly the same, except
that for TaskCompletionSource (without the <T>), the SetResult and TrySetResult
methods do not accept any parameter and just complete the Task without setting a
result (because unlike Task<T>, Task does not have a Result property). For the rest of
this chapter, I’m going to write TaskCompletionSource instead of TaskCompletion-
Source or TaskCompletionSource<T>, but everything I write applies to both.

TaskCompletionSource has a property named Task that lets us get the Task created
by it. Each TaskCompletionSource controls one Task, and reading the Task property
multiple times will return the same Task object.

Initially, the Task status is WaitingForActivation, and the Task’s IsCompleted,
IsCompletedSuccessfully, IsCanceled, and IsFaulted properties are all false.
Using await on the new Task will asynchronously wait, and calling Wait or reading the

136 Chapter 10  Await your own events

Result property will block until you use the TaskCompletionSource to complete the
Task.

To demonstrate the various ways we can complete the Task, we’ll use the following
example code.

Listing 10.1  A template for TaskCompletionSource demo

public class TaskCompletionSourceDemo
{
 private Task<int> BackgroundWork()
 {
 var tcs = new TaskCompletionSource<int>();
 Task.Run(()=>
 {

 });
 return tcs.Task;
 }

 public async Task RunDemo()
 {
 var result = await BackgroundWork();
 Console.WriteLine(result);
 }
}

Note that the BackgroundWork method is not marked as async. Because of this, the
compiler doesn’t transform it, we can’t use await inside of it, and the compiler doesn’t
wrap the result in a Task, which means we are responsible for creating and returning
the Task<int> ourselves. The RunDemo method (that is marked as async) just uses
await to get the result produced by the BackgroundWork method.

TaskCompletionSource has three sets of methods we can use to complete the Task:

1	 SetResult and TrySetResult will complete the Task, change its state to RanTo-
Completion, and in case of a Task<T>, store the result value in the Task<T> object
(accessible with Task.Result or await). After calling SetResult or TrySet
Result, both IsCompleted and IsCompletedSuccessfully will be true.

Listing 10.2  TaskCompletionSource.TrySetResult demo

public class TaskCompletionSourceDemo
{
 private Task<int> BackgroundWork()
 {
 var tcs = new TaskCompletionSource<int>();
 Task.Run(()=>
 {
 tcs.TrySetResult(7)
 });
 return tcs.Task;
 }

No async keyword

Runs in another thread

Task completion
should happen here.

Returns Task<int>,
not int

Waits for Task to complete

Completes Task
successfully

	 137Introducing TaskCompletionSource

 public async Task RunDemo()
 {
 var result = await BackgroundWork();
 Console.WriteLine(result);
 }
}

This example shows how to complete a Task successfully. Calling TrySetResult
(or SetResult) causes the await to continue running.

2	 SetException and TrySetException will complete the Task, change its state to
Faulted, and store the exception or list of exceptions in the Task. The exception
or list of exceptions will be wrapped in an AggregateException object and stored
in the Task.Exception property. Using await on the task, reading the Result
property, or calling Wait() will cause the AggregateException to be thrown.
After calling SetException or TrySetException, IsCompleted and IsFaulted
will be true.

Listing 10.3  TaskCompletionSource.TrySetException demo

public class TaskCompletionSourceDemo
{
 private Task<int> BackgroundWork()
 {
 var tcs = new TaskCompletionSource<int>();
 Task.Run(()=>
 {
 tcs.TrySetException(new Exception("oops"))
 });
 return tcs.Task;
 }

 public async Task RunDemo()
 {
 var result = await BackgroundWork();
 Console.WriteLine(result);
 }
}

In this example, we used TrySetException to complete the Task and change it to
a faulted state. The await operator will throw the exception.

3	 SetCanceled and TrySetCanceled will complete the Task, change its state
to Canceled, and optionally, store a cancellation token in the Task. Using
await on the task, reading the Result property, or calling Wait()will throw a
TaskCanceledException. If you pass a cancellation token to TrySetCanceled, it
will be available in the TaskCanceledException.CancellationToken property.
After calling SetCanceled or TrySetCanceled, the IsCompleted and IsCanceled
properties will be true. Note that although await will throw an exception, the
Task’s IsFaulted property will be false, and the Exception property will be
null.

Continues running

Prints 7

Completes Task
with error

Throws
AggregateException

138 Chapter 10  Await your own events

Listing 10.4  TaskCompletionSource.TrySetCanceled demo

public class TaskCompletionSourceDemo
{
 private Task<int> BackgroundWork()
 {
 var tcs = new TaskCompletionSource<int>();
 Task.Run(()=>
 {
 tcs.TrySetCanceled()
 });
 return tcs.Task;
 }

 public async Task RunDemo()
 {
 var result = await BackgroundWork();
 Console.WriteLine(result);
 }
}

In this example, we used TrySetCanceled to cancel the Task, and await will throw
a TaskCanceledException exception. There is no way to use TaskCompletion-
Source to set the Task’s status to any of the other options (WaitingToRun, Running, or
WaitingForChildrenToComplete).

The difference between the two variations of each method is that the older SetXXX
will throw an exception if the Task is already complete, while the newer TrySetXXX
will not (if the Task is already complete, the Task will not change, and any parameters
passed to the method will be ignored). The TrySetXXX variation was added because
the older methods can create a race condition in any situation where you might try to
complete a task from two different threads (for example, one thread doing the work
and another handling cancellation). It is best practice to use the newer Try versions of
all the methods unless you specifically rely on them to throw an exception if the Task is
already complete. The Try variant will return true if it completes the Task or false if
the Task was already completed.

For example, in the following code snippet, simulating a situation when a different
thread cancels the Task right before a calculation is complete, the call to SetResult will
throw an exception:

var tcs = new TaskCompletionSource<int>();
tcs.SetCanceled();
tcs.SetResult(7);

While in this code snippet, the call to TrySetResult will be ignored without an excep-
tion (you can still know TrySetResult failed because it will return false):

var tcs = new TaskCompletionSource<int>();
tcs.TrySetCanceled();
tcs.TrySetResult(7);

Completes Task by
canceling it

Throws
TaskCanceledException

Cancels the task

Throws an exception

Cancels the task

Ignored, returns false

	 139Choosing where continuations run

10.2	 Choosing where continuations run
The code that runs after the asynchronous operation (the code after the await or the
callback passed to ContinueWith) is called a continuation. Calling any of the Task
CompletionSource’s methods that complete the Task will cause the continuation to
run (obviously, that’s the whole point), and TaskCompletionSource lets us decide
whether the continuation can run immediately in the thread that called the Task
CompletionSource method.

If we allow the continuation to run immediately, it can run before TrySetResult (or
any of the other methods) return. This means that TrySetResult can take an arbitrarily
long time to run and that our code is in a state that can run arbitrary code that isn’t
under our control safely. For example, the following code has a potential deadlock bug:

lock(_valueLock)
{
 _taskSource.TrySetResult(_value);
}

In this code, we want to use a value protected by a lock as the result of a task, so we
acquire the lock and call TrySetResult with the value. This might cause code that is
not under our control (the Task continuation) to run while we are holding the lock,
and if this code waits for something else that needs the same lock in another thread, we
will have a deadlock.

One solution to this problem is to move the TrySetResult call outside of the lock
block:

int copyOfValue;
lock(_valueLock)
{
 copyOfValue = _value;
}
_taskSource.TrySetResult(copyOfValue);

We can’t use the _value variables outside of the lock block, but we can copy it to a
local variable and pass the copy to TrySetResult outside the lock. This might still run
code outside our control before TrySetResult returns, so we can’t know how much
time TrySetResult will take, but there is no longer a risk of a deadlock.

Another option is to make TaskCompletionSource run the code in another thread. We
do this by using the TaskCompletionSource constructor that accepts a TaskCreation
Options parameter and passes the TaskCreationOptions. RunContinuations

Asynchronously value:

_taskSource = new TaskCompletionSource<int>(
 TaskCreationOptions. RunContinuationsAsynchronously);

We need to decide whether we want TaskCompletionSource to run the continuation
code in another thread at the TaskCompletionSource construction time. We can’t

140 Chapter 10  Await your own events

choose some TrySetResult to run the continuation in a background thread while oth-
ers don’t. For example, we can’t make TaskCompletionSource use another thread only
when we are holding a lock.

I used TrySetResult in this example, but everything here also applies to all the other
methods that complete the Task (SetResult, SetException, TrySetExcetion, Set
Canceled, and TrySetCanceld).

10.3	 Example: Waiting for initialization
Let’s start with a simple example: we’ll write a class that requires a lengthy initializa-
tion process and performs this initialization in the background. Whenever you call a
method of this class, if the initialization hasn’t completed yet, that method will await
until the initialization is complete.

Listing 10.5  Class with background initialization

public class RequiresInit
{
 private Task<int> _value;

 public RequiresInit ()
 {
 var tcs = new TaskCompletionSource<int>();
 _value = tcs.Task;
 Task.Run(()=>
 {
 try
 {
 Thread.Sleep(1000);
 tcs.TrySetResult(7);
 }
 catch(Exception ex)
 {
 tcs.TrySetException(ex);
 }
 });
 }
 public async Task<int> Add1()
 {
 var actualValue = await _value;
 return actualValue+1;
 }
}

In this example, we wrote the RequiresInit class. This class has a lengthy initialization
process and doesn’t want to (or maybe can’t) let the entire initialization process run
in the constructor. So inside the constructor, we just kick off that initialization process
in a background thread using Task.Run and return immediately. To access the result
of the initialization process, we create a Task<int> using TaskCompletionSource<int>
and assign it to the value field.

Assigns the Task before
leaving constructor

Simulates long calculation

Sets the Task’s result

Waits for result if needed

	 141Example: Adapting old APIs

Obviously, the result of this lengthy initialization is probably a complex object, but
for the sake of simplicity, it’s an int in this example. Also, the initialization is just a call
to Thread.Sleep, and the result of the initialization is always the number 7.

 In the background thread, after calculating the result, we use TrySetResult to com-
plete the task and assign the calculation result to it. In case of an exception during the
calculation, we use TrySetException to propagate the exception into the task.

Later, when we want to use the initialization result, we read it using await _value,
and if the calculation has already completed, this will return the value immediately.
If the calculation hasn’t completed yet, this will asynchronously wait until the result
becomes available. Finally, if the calculation has failed, this will throw an exception tell-
ing us why.

Using a task like this combines getting the result, handling the signal that the result
is available, and reporting initialization errors (if any) into a single operation. This not
only saves us from typing but also makes the code more maintainable because future
developers can’t forget to wait for the value to become available or forget to check for
errors.

10.4	 Example: Adapting old APIs
Probably the most straightforward use of TaskCompletionSource is adapting asyn-
chronous APIs that are incompatible with await. Fortunately, this is becoming quite
rare because almost all the asynchronous operations in the .NET library and common
third-party components have been adapted to use Task objects and are already com-
patible with await. Today, libraries that don’t support async/await are mostly either
wrappers for non-.NET code or written by authors who really hate async/await.

To demonstrate this, we’ll use a pattern that was pretty common before async
/await, an interface that lets you start an operation and get notified when it completes:

public interface IAsyncOperation
{
 void StartCalculation();
 event Action<int> CalculationComplete;
}

Adapting this using TaskCompletionSource is rather simple, as shown in the following
listing.

Listing 10.6  Adapting non-standard asynchronous APIs

public Task<int> CallAsyncOperation()
{
 var tcs = new TaskCompletionSource<int>();
 _asyncOperation.CalculationComplete +=
 result => tcs.TrySetResult(result);
 _asyncOperation.StartCalculation();
 return tcs.Task;
}

142 Chapter 10  Await your own events

We just created a TaskCompletionSource, subscribed to the asynchronous operation’s
nonstandard completion notification, and called TrySetResult when the asynchro-
nous operation is completed.

10.5	 Old-style asynchronous operations (BeginXXX, EndXXX)
The standard pattern for asynchronous operations in .NET before tasks and async/
await was a pair of methods, one with the Begin prefix that returns an IAsyncResult
object and one with the End prefix. All those methods in the .NET library and most
third-party libraries already have a task-based alternative, so it’s quite rare to have to
deal with those. I’m only talking about this so you’ll know what all of those BeginXXX
and EndXXX methods are and what to do if you find yourself using an old library that
wasn’t adapted to using the Task class.

Before async/await, writing asynchronous code was difficult. The asynchronous
methods were a rarely used option for only those who really needed them, so the asyn-
chronous version was based on the non-asynchronous API version. The asynchronous
version was always composed of two methods:

¡	The method with the Begin prefix accepts all the parameters of the non-async
version and two additional parameters (called callback and state). This method
starts the asynchronous operation. The IAsyncResult object returned by the
Begin method represents the asynchronous operation and, like Task in the
newer APIs, can be used to detect when the operation completes.

¡	The method with the End prefix takes the IAsyncResult object, cleans up any
resources used by the asynchronous operation, and returns the result of the
operation.

To demonstrate adapting this, we’ll take an old-style asynchronous operation and adapt
it to the new Task-based style. For this example, we will use the Stream.Read method:

int Read (byte[] buffer, int offset, int count);

And the old-style async version is composed of two methods—Stream.BeginRead and
Stream.EndRead:

IAsyncResult BeginRead(
 byte[] buffer, int offset, int count,
 AsyncCallback? callback, object? state);
int EndRead (IAsyncResult asyncResult);

As you can guess, we can use the callback parameter and TaskCompletionSource just
like we used in the previous example, but there’s an easier way. The .NET library con-
tains the Task.Factory.FromAsync method that creates a Task from this method pair.
Here is how it is used:

public Task<int> MyReadAsync(
 Stream stream, byte[] buffer, int offset, int length)

	 143Example: Asynchronous data structures

{
 return Task.Factory.FromAsync(
 (callback,state)=>stream.BeginRead(
 buffer,0,buffer.Length,callback,state), stream.EndRead, null);
}

The Task.Factory.FromAsync method takes three parameters:

¡	A lambda that calls the BeginXXX method—If the BeginXXX method doesn’t need
any parameters other than callback and state, you can pass it without wrapping it
in a lambda.

¡	The EndXXX method—If this method has out parameters, you need to wrap it in a
lambda and extract the values of those parameters.

¡	The state parameter—It isn’t required if you are using lambda, and it can always
be null.

Because most APIs (including Stream.Read) already have a Task-based version, and
newer APIs only have Task-based asynchronous versions without the BeginXXX and
EndXXX methods, having to use this is quite rare. So we will not go into any more detail
about it.

10.6	 Example: Asynchronous data structures
In this example, we’ll write an asynchronous queue. Our asynchronous queue, just like
a normal queue, is a FIFO (first-in, first-out) collection with two operations: enqueue
and dequeue. The enqueue operation adds an item to the queue, and the dequeue
operation returns the first item in the queue if the queue isn’t empty. What makes our
AsyncQueue special is that if there are no items in the queue, the dequeue operation
will return a Task that will complete when a new item is later added to the queue. That
way, await asyncQueue.Dequeue() will return immediately with the next value if it’s
already in the queue or, if the queue is empty, asynchronously wait until the next value
becomes available.

Our queue class is mostly two queues, one of data waiting to be processed and one
of processors waiting for data. At least one of those queues must be empty at all times,
because otherwise, we have missed an opportunity to match a data item with a processor.

Listing 10.7  AsyncQueue

public class AsyncQueue<T>
{

 private Queue<TaskCompletionSource<T>>
 _processorsWaitingForData = new();
 private Queue<T> _dataWaitingForProcessors = new();
 private object _lock = new object();

When a processor becomes available, it calls Dequeue. If a data item is waiting, we deliver
it to the processor immediately via a completed Task created with Task.FromResult.

144 Chapter 10  Await your own events

If no data is available, we create a new TaskCompletionSource and return its Task, and
we enqueue this TaskCompletionSource in the processorsWaitingForData queue:

 public Task<T> Dequeue(CancellationToken cancellationToken)
 {
 lock (_lock)
 {
 if (_dataWaitingForProcessors.Count > 0)
 {
 return Task.FromResult(_dataWaitingForProcessors.Dequeue());
 }
 var tcs = new TaskCompletionSource<T>(
 TaskCreationOptions.RunContinuationsAsynchronously);
 _processorsWaitingForData.Enqueue(tcs);

Because whoever uses our class is likely to expect Enqueue and Dequque operations to
be fast, we create the TaskCompletionSource objects with the TaskCreationOptions
.RunContinuationsAsynchronously flag. This means the code that processes the data
will run in another thread and not inside our Enqueue and Dequeue methods. It also
allows us to call TrySetResult and TryCancel while holding a lock.

We also let the processor pass a CancellationToken because we need a way for a
processor to indicate it is no longer available. If this cancellation token becomes can-
celed, we cancel the processor’s Task but leave the TaskCompletionSource in the queue
because it’s simpler that way.

As an optimization, we only register if the CancellationToken can be canceled. An
example of a CancellationToken that can’t be canceled is the dummy token returned
by the CancellationToken.None property:

 if (cancellationToken.CanBeCanceled)
 {
 cancellationToken.Register(() =>
 {
 tcs.TrySetCanceled(cancellationToken);
 });
 }
 return tcs.Task;
 }
 }

When data is added to the queue by calling Enqueue, we try to deliver it to the first avail-
able processor, dequeue the first TaskCompletionSource from _processorsWaiting-
ForData queue, and call TrySetResult. If TrySetResult returns true, we successfully
completed the Task and sent the data item to the processor, so we can return.

If TrySetResult returns false, it means the Task has already completed, that is, it
was canceled because the TaskCompletionSource is fully under our control, and the
cancellation code is the only code we wrote that completes a task without first remov-
ing its TaskCompletionSource from the queue. In this case, we just move to the next
processor.

	 145Summary

As an optimization, we only handle the cancellation case if the Cancellation
Token can be canceled (for example, the CancellationToken.None property returns a
dummy token that is never canceled):

 public void Enqueue(T value)
 {
 lock (_lock)
 {
 while (_processorsWaitingForData.Count > 0)
 {
 var nextDequqer = _processorsWaitingForData.Dequeue();
 if(nextDequqer.TrySetResult(value))
 {
 return;
 }
 }

If the processor queue was empty or all the entries in the queue were canceled, we
enqueue the data in the _dataWaitingForProcessors queue, where it will wait until
someone calls Dequeue:

 _dataWaitingForProcessors .Enqueue(value);
 }
 }

}

Summary

¡	You can use TaskCompletionSource to create Task objects and TaskCompletion-
Source<T> to create Task<T> objects.

¡	TaskCompletionSource<T>.TrySetResult is used to complete a Task<T> suc-
cessfully and set the Task’s Result property.

¡	TaskCompletionSource.TrySetResult is used to complete a Task successfully. It
doesn’t set the result because unlike Task<T>, Task doesn’t have a result.

¡	TaskCompletionSource<T>.TrySetException and TaskCompletionSource
.TrySetException are used to complete the Task, change its status to faulted,
and store one or more exceptions in the Task<T> or Task.

¡	TaskCompletionSource<T>.TrySetCanceled and TaskCompletionSource.Try-
SetCanceled are used to complete the Task and change its state to Canceled.

¡	While using await, calling Wait or reading the Result property of a canceled
Task will throw a TaskCanceledException. The Task’s Exception property
will be null. You can use the Task’s Status or IsCanceled properties to check
whether a Task is canceled.

¡	All the TrySetXXX methods mentioned previously will return true if they com-
pleted the Task or false if the Task is already completed.

146 Chapter 10  Await your own events

¡	There’s also a SetXXX variant that throws an exception if the Task is already com-
pleted. It’s best practice to use the TrySetXXX variant because the older SetXXX
might cause a race condition in some multithreading scenarios.

¡	By default, continuations (code after the await or in ContinueWith callbacks)
can run immediately inside the TrySetXXX or SetXXX call, which makes it unsafe
to call them while holding a lock. To make it run in another thread (and so make
it safe to call them while holding a lock), pass the TaskCreationOptions.Run-
ContinuationsAsynchronously flag to the TaskCompletionSource constructor.

¡	If you need to use an old-style asynchronous operation (BeginXXX, EndXXX) with
tasks, use the Task.Factory.FromAsync method.

147

11Controlling on
which thread your

asynchronous code runs

This chapter covers

¡	The await threading behavior
¡	Understanding SynchronizationContext
¡	When to use ConfigureAwait
¡	Using Task.Yield
¡	The basics of TaskScheduler

Most of the time, you don’t care on which thread your code runs. If you calculate
something, your calculation will produce the exact same result regardless of the
thread or CPU core it runs on. But some operations do work differently, depending
on the thread that runs them, the most common being

¡	GUI—In WinForms and in WPF, all UI elements can only be accessed by the
same thread that created them. Typically, all UI elements are created and
accessed by just one thread (called the UI thread), and it is usually the process’
main thread.

¡	ASP.NET classic—In ASP.NET classic, which is an older version used in
.NET Framework 4.8 and earlier, the HttpContext.Current property will

148 Chapter 11  Controlling on which thread your asynchronous code runs

only return the correct value if called from the right thread. (For anyone who
doesn’t have experience with ASP.NET classic, access to HttpContext.Current is
required in many common scenarios.)

¡	COM—The rules about threads and COM components are complex, and we
won’t cover them in this book. But accessing a COM component from the wrong
thread might fail or incur a significant performance penalty, depending on the
circumstances.

¡	Blocking operations—Blocking operations can lock up the thread for a potentially
long time. Blocking different threads can have different effects on the system;
for example, blocking the UI thread will cause the UI to freeze, blocking a lot
of thread pool threads can prevent the servers from accepting connections and
continuing asynchronous operations, and so forth.

¡	Potentially any other piece of third-party code—Any code you use can have restrictions
regarding its use. Newer .NET code tends to be compatible with async/await
and agnostic about which thread runs it. But older code and native code can have
stricter rules about threads.

In previous chapters, we talked about code after an await and the callbacks passed
to ContinueWith as interchangeable. However, everything in this chapter applies only
to await. Back in chapter 3, we implemented await using ContinueWith, and I said
the code generated by the compiler is more complicated. This is what I meant: all the
complexity in this chapter is implemented by code generated by the compiler for the
await operator.

11.1	 await-threading behavior
Basically, the rules for where the code after await runs are

¡	In UI apps (WinForms and WPF), if you are using await in a UI thread and don’t
use ConfigureAwait (we will talk about it later in this chapter), the code after the
await will run in the same thread.

¡	In ASP.NET classic (not ASP.NET Core), if you are using await in a thread that is
processing a web request, and you don’t use ConfigureAwait, the code after the
await will run in the same thread.

¡	In all other cases, the code after the await will run in the thread pool.

This list is short, simple, and easy to remember, and it reveals the motivation behind
this feature—supporting UI apps and the older ASP.NET. While this is the default
behavior for everything included out of the box in .NET (at least up to version 9), this
behavior can be modified. Later in this chapter, we will see how this is implemented
and how you (and third-party code) can change this behavior.

11.1.1	 await in UI threads

It’s common in UI apps to read values from the user, do something with them, and
display the result. For example, the following methods, which are called when the user

	 149await-threading behavior

clicks a button, read the text the user has entered into a text box, pass it to the async
DoSomething method, and display the result on screen in a label.

Listing 11.1  await in a UI event handler

private async void button1_Click(object sender, EventArgs ea)
{
 label1.Text = await DoSomething(textBox1.Text);
}

This method will be called by the UI framework on the thread that created the button.
In almost all cases, this will be the thread that created all the UI (and so it will be the
only thread that can access the UI). Reading textBox1.Text is done before the await,
and it runs on the UI thread. Writing label1.Text comes after the await, and it will
fail if not run on the UI thread.

If the code running after the await did not run on the UI thread, this would break
one of the most useful properties of await—that asynchronous code using await is
written just like non-asynchronous code. If we use what we learned in chapter 3 about
converting this method from an async method that uses await to a non-async method
that uses ContinueWith, we will get the following listing.

Listing 11.2  UI access failure with ContinueWith

private void button1_Click(object sender, EventArgs ea)
{
 var result = DoSomething(textBox1.Text).ContinueWith(t=>
 {
 label1.Text = t.Result;
 }
}

We just took the part after the await and moved it into a lambda that we passed to
ContinueWith, but this doesn’t work. If you run it, you will get an exception because
ContinueWith always runs the callback on the thread pool (and not the UI thread).
So we need to make the part that sets the label text run in the UI thread explic-
itly. Both WinForms and WPF provide this feature. In WinForms, this is done with
Control.BeginInvoke, and in WPF, with Dispatcher.BeginInvoke.

Listing 11.3  UI access with ContinueWith

private void button1_Click(object sender, EventArgs ea)
{
 var result = DoSomething(textBox1.Text).ContinueWith(t=>
 {
 label1.BeginInvoke((Action)(()=>
 {
 label1.Text = t.Result));
 });
 }
}

Changes await to
ContinueWithException

Switches to UI thread

150 Chapter 11  Controlling on which thread your asynchronous code runs

In this listing, we used ContinueWith, like in listing 11.2, but this time, we also used
Control.BeginInvoke to ask WinForms to run the code that writes to label1.Text in
the UI thread. Now the UI is only accessed from the UI thread, and everything works.

Listings 11.1 and 11.3 do exactly the same thing, and you can see from the difference
between them that the threading behavior of await saves us quite a bit of complexity
and messing with threads.

11.1.2	 await in non-UI threads

Now that we have covered the UI case and we’ve seen why returning to the same thread
after an await is so important in UI threads, let’s see why await doesn’t return to the
same thread when it is used in non-UI threads. To demonstrate this, we’ll write a pro-
gram that creates a thread and does something asynchronous in that thread.

Listing 11.4  async operation is a thread created by the Thread class

var thread = new Thread(async ()=>
 {
 Console.WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId}");
 await Task.Delay(500);
 Console.WriteLine($"Thread {Thread. CurrentThread.ManagedThreadId}");
 });
thread.Start();
Thread.Sleep(1000);

This program creates a thread that asynchronously waits for half a second. It also writes
the thread ID to the console both before and after waiting. The main thread starts
the thread we created and then waits for a second because the program will terminate
when the code in the main thread ends, and we want to keep the program alive until
the second thread does its thing.

If we run this code, we’ll see that the thread ID before and after the await is differ-
ent. But why didn’t await get us back to the original thread like with UI threads?

If you remember from chapter 3, await sets up the asynchronous operation and
then returns, in this case, from the main method of the thread (the method we passed
to the Thread constructor). This will make the thread terminate (successfully; for all it
knows, the code we ran in the thread finished doing whatever we needed it to do). After
waiting for half a second, when it’s time to run the code after the await, the original
thread that called await no longer exists.

But what happens if we manage to call await in a way that doesn’t terminate the
thread?

Listing 11.5  async operation without terminating the thread

var thread = new Thread(()=>
{
 DoSomethingAsync();
 int i=0;

	 151Synchronization contexts

 while(true) Console.Write(++i);
});
thread.IsBackground = true;
thread.Start();
Thread.Sleep(1000);

async Task DoSomethingAsync()
{
 Console.WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId}");
 await Task.Delay(500);
 Console.WriteLine($"Thread {Thread. CurrentThread.ManagedThreadId}");
}

In this listing, we changed the code so the await happens in a method that is called
from the thread’s main code. In the thread’s main method, we ignore the Task
returned by this method and do not await it. Because we don’t use await, the com-
piler await support does not kick in, and it does not introduce a return. That way, the
thread’s main method doesn’t return, and the thread does not terminate. After calling
the async method, the thread starts counting forever just so it has something to do,
and we can see it’s working. We also marked this thread as a background thread, so the
app will exit after the main thread exits (after one second) and will not keep running
forever.

If we run this code, we will see that the code before and after the await ran on differ-
ent threads (as expected). We can also see that the thread we created is busy counting.
Even if the system wanted to run the code after the await in the same thread, it has no
way of doing so. The thread is running our code, and we didn’t implement any way for
the system to ask us to run the code after the await (like WinForms’s Control.Begin-
Invoke that we used in listing 11.3).

11.2	 Synchronization contexts
The UI thread behavior isn’t magic or some special case in the compiler available just
for UI frameworks written by Microsoft. This behavior is implemented using a .NET
feature called SynchronizationContext.

A SynchronizationContext is a generic way of running code in another thread. Let’s
say that you are writing code that spins up a background thread to calculate something
and then uses a callback to report the result back to its caller. By default, the callback
will run in the background thread you created, which is inconvenient if used in a native
UI app because trying to access the UI from that thread will cause an exception.

If you know this code will always be used in, for example, a WinForms app, you could
use the Control.BeginInvoke method like we did in listing 11.3. However, this has
the obvious limitation that it only works in WinForms. For WPF, you’ll need to use
Dispatcher, and other frameworks will have other mechanisms.

If you want your code to work in any situation, you can’t use Control.BeginInvoke
directly. You could create an abstract class that represents running stuff in another
thread and require whoever uses your code to implement it. The class may look like this:

152 Chapter 11  Controlling on which thread your asynchronous code runs

public abstract class RunInOtherThread
{
 public abstract void Run(Action codeToRun);
}

Anyone writing a WPF app will implement the Run method using Dispatcher.Begin-
Invoke, anyone writing a WinForms app will implement it using Control.BeginInvoke,
and so on for any framework that has threading limitations. That way, you can both run
your callbacks in the most convenient thread for your user and not take a dependency
on any UI framework. As a bonus, this will also work with future frameworks you don’t
even know about.

SynchronizationContext is the .NET built-in implementation of our RunInOther-
Thread class. It has two ways of running code in the target thread: Send, which will wait
until the other threads finish running our code, and Post which doesn’t wait. await
only uses Post.

But we never passed a SynchronizationContext to await, so how does it know how
to use the correct one? For this, a SynchronizationContext can be associated with a
thread by calling SynchronizationContext.SetSynchronizationContext. After that
call, any code running in this thread can read SynchronizationContext.Current to
retrieve it. WinForms, WPF, and ASP.NET classic all implement a class derived from
SynchronizationContext and associate it with the UI or request handling threads so
that any generic code that needs to return to the correct thread (such as await) can
use it.

Let’s write a SynchronizationContext-derived class that runs the code after the
await in the same thread. We’ll use BlockingCollection and the work queue pattern
we talked about back in chapter 8.

Listing 11.6  Custom SynchronizationContext for async/await

using System.Collections.Concurrent;

public class SingleThreadSyncContext : SynchronizationContext
{

We begin with a Run method that will start our work queue. Because we want to run
everything in the current thread, the Run method will not return until we are finished.
The Run method will accept as a parameter a method to run because without it, no one
will be able to use our SynchronizationContext (only code that we run after the Set-
SynchronizationContext call will have access to the SynchronizationContext, so if
we need to run code, that will kick off the operation there):

 public static void Run(Func<Task> startup)
 {
 var prev = SynchronizationContext.Current;
 try
 {

	 153Synchronization contexts

 var ctxt = new SingleThreadSyncContext();
 SynchronizationContext.SetSynchronizationContext(ctxt);
 ctxt.Loop(startup);
 }
 finally
 {
 SynchronizationContext.SetSynchronizationContext(prev);
 }
 }

Now we’ll implement the work queue part. Just like we did in chapter 8, we create
a queue of delegates representing the work to be done. Using foreach with Get
ConsumingEnumerable, we get the next item in the queue or wait if the item isn’t avail-
able yet, and then we invoke the delegate we get from the queue:

 private BlockingCollection<(SendOrPostCallback call,object? state)>
 _queue = new();

 private void Loop(Func<Task> startup)
 {
 startup().ContinueWith(t => _queue.CompleteAdding());
 foreach(var next in _queue.GetConsumingEnumerable())
 {
 next.call(next.state);
 }
 }

The last part is the Post method that will add work to the queue. When an asynchro-
nous operation ends, await will call it to run the code after the await (via a Task
Scheduler; we’ll talk about those later in this chapter):

 public override void Post(SendOrPostCallback d, object? state)
 {
 _queue.Add((d, state));
 }

What’s left are all the parts of SynchronizationContext that are not used by await. We
will just throw NotImplementedException exceptions for all of those:

 public override void Send(SendOrPostCallback d, object? state)
 {
 // not needed for async/await
 throw new NotImplementedException();
 }

 public override SynchronizationContext CreateCopy()
 {
 // not needed for async/await
 throw new NotImplementedException();
 }

 public override int Wait(IntPtr[] waitHandles,

Associates SynchronizationContext
with threadRuns work

queue

Restores original
SynchronizationContext

Stops work when the
first method completes

Work queue loop

154 Chapter 11  Controlling on which thread your asynchronous code runs

 bool waitAll, int millisecondsTimeout)
 {
 // not needed for async/await
 throw new NotImplementedException();
 }
}

Now we just need to test our custom SynchronizationContext. First, we’ll run a sim-
ple async operation without it.

Listing 11.7  Simple async operation without SingleThreadSyncContext

Console.WriteLine($"before await {Thread.CurrentThread.ManagedThreadId}");
await Task.Delay(500);
Console.WriteLine($"before await {Thread.CurrentThread.ManagedThreadId}");

This code just prints the current thread ID, uses await, and then prints the current
thread ID again. If we run this, we’ll see that the code after the await runs in a differ-
ent thread than the code before the await, just like we expected.

And now let’s run the same code with our SingleThreadSyncContext.

Listing 11.8  Simple async operation with SingleThreadSyncContext

SingleThreadSyncContext.Run(async ()=>
{
 Console.WriteLine($"before {Thread.CurrentThread.ManagedThreadId }");
 await Task.Delay(500);
 Console.WriteLine($"after {Thread.CurrentThread.ManagedThreadId }");
});

We took the exact code from listing 11.7 and put it into a lambda passed to Single-
ThreadSyncContext.Run. When we run this code, we’ll see that the thread ID doesn’t
change, and the code before and after the await runs in the same thread (specifically,
the thread that called SingleThreadSyncContext.Run).

WinForms and WPF both install their own SynchronizationContext in the UI
thread, and as we’ve seen in our example, any third-party code can also use its own
SynchronizationContext by calling SetSynchronizationContext. But if no one called
SetSynchronizationContext in the current thread—which is almost always the case
in non-UI apps (such as console apps and ASP.NET Core apps), as well as in non-UI
threads in UI apps—then SynchronizationContext.Current will be null, and like
we’ve seen in listing 11.7, the code after an await will run in the thread pool.

11.3	 Breaking away—ConfigureAwait(false)
We’ve talked about why and how await returns to the same thread in UI apps. Now it’s
time to talk about how and why to block this behavior.

The ConfigureAwait(false) method allows us to prevent await from using the cur-
rent SynchronizationContext, as well as the current TaskScheduler (that we’ll discuss

	 155Breaking away—ConfigureAwait(false)

later in this chapter). First, I want to debunk the common but wrong explanation of
ConfigureAwait(false) that “without ConfigureAwait(false), you continue on the
same thread, and with ConfigureAwait(false), you continue on another thread.”
First, let’s debunk the first half of this explanation.

Listing 11.9  Console app without ConfigureAwait(false)

Console.WriteLine($"1: {Thread.CurrentThread.ManagedThreadId}");
await Task.Delay(500);
Console.WriteLine($"2: {Thread.CurrentThread.ManagedThreadId}");

If you run this program as a console application, you will see that we used await with-
out ConfigureAwait(false) and switched threads. The reason is that while await tries
to stay in the same SynchronizationContext (not thread), we do not have one set, and
so await continues on the thread pool.

Now for the second part: Will ConfigureAwait(false) always switch to a different
thread?

Listing 11.10  ConfigureAwait(false) and completed tasks

Console.WriteLine($"1: {Thread.CurrentThread.ManagedThreadId}");
await DoSomething().ConfigureAwait(false);
Console.WriteLine($"2: {Thread.CurrentThread.ManagedThreadId}");

async Task DoSomething()
{
 Console.WriteLine("did something");
}

If you run this code, you will see that ConfigureAwait(false) didn’t make us switch
threads. The reason for this is that DoSomething always returns a completed task, and
using await on a completed task always just continues running on the same thread.

Why does DoSomething return a completed task? Like we said in chapter 3, a sim-
plified but mostly correct model (except for synchronization contexts) of how the
compiler deals with async methods is that each await is replaced with a call to Task
.ContinueWith. Because DoSomething does not use await, the compiler has nothing
to replace. The method remains exactly the same as it would if it weren’t async, except
that it needs to return a Task, so it translates roughly into

Task DoSomething()
{
 Console.WriteLine("did something");
 return Task.CompletedTask;
}

Remember, marking a method as async does not make it run in the background—it
only turns on the compiler’s support for await.

156 Chapter 11  Controlling on which thread your asynchronous code runs

You might think our DoSomething method is a rare edge case or even a bug, but meth-
ods that always return an already completed Task are not uncommon. Many libraries
have non-asynchronous methods that return a Task, mostly because the author wants to
be able to support asynchronous operations in the future without changing the API or
because the operation was asynchronous in a previous version.

Now let’s see what ConfigureAwait(false) really does. We’ll start with this Win-
Forms code.

Listing 11.11  WinForms event handler with ConfigureAwait

private async void Button1_Click(object sender, EventArgs ea)
{
 Debug.WriteLine($" before: {Thread.CurrentThread.ManagedThreadId }");
 await Task.Delay(500).ConfigureAwait(false);
 Debug.WriteLine($" after: {Thread.CurrentThread.ManagedThreadId }");
}

This code uses await with ConfgureAwait(false) to wait for half a second and prints
the thread ID both before and after the await. We know that without ConfigureAwait
(false), both should print the same thread ID, but if we run this code, we’ll see two
different thread IDs, exactly like we’ve seen in listing 11.9. The difference between
listings 11.9 and 11.11 is that listing 11.9 is a console app, and as such, it doesn’t have
a SynchronizationContext, while listing 11.11 is a WinForms app, and so it has a
SynchronizationContext. So what ConfigureAwait(false) does is simply ignore any
SynchronizationContext associated with the current thread.

If we summarize everything we’ve talked about so far, the rules for where the code
after an await runs are the following:

¡	If the task has already completed, the code continues to run in the same thread.
ConfigureAwait(false) has no effect in this case.

¡	If there is a SynchronizationContext set for the current thread, and Configure
Await(false) is not used, the code after the await will use the Synchronization
Context to run.

¡	In all other cases, the code will run using the thread pool.

And now I’m going to write something that might seem controversial to readers who
have seen async/await best practices’ lists (but really isn’t): don’t use Configure
Await(false) every time you use await.

A lot of best practice lists state you should use ConfigureAwait(false) whenever
you use await. They say that because misusing async/await in UI apps and ASP.NET
classic apps (not ASP.NET core) can cause deadlocks, and ConfigureAwait(false) will
prevent them. However, this is throwing out the baby with the bathwater. The official
guidance from Microsoft agrees with me and says you should always use Configure
Await(false) in library code and not application code.

Quite a few best practice lists adopted the use “always use ConfigureAwait
(false)” part but leave out the “in library code” part because it seems like just putting

	 157Breaking away—ConfigureAwait(false)

ConfigureAwait(false)everywhere will prevent deadlocks without making the devel-
oper think about it or debug their code, which sounds nice but doesn’t work so well.
I will show the problem with this approach and other solutions for this deadlock. But
first, let’s see the problem.

Listing 11.12  async/await deadlock

private void button1_Click(object sender, EventArgs ea)
{
 var task = DoSomething();
 label1.Text = task.Result;
}

private async Task<string> DoSomething()
{
 await Task.Delay(500);
 return "done";
}

This code combines asynchronous calls with blocking calls. The first method,
button1_Click, calls DoSomething without using await, and then it reads the Task
.Result property—that makes the thread block because DoSomething hasn’t
completed yet. Meanwhile, inside DoSomething, Task.Delay completes, and the next
line (return "done") is ready to run. As we’ve seen in this chapter, the code after the
await will run on the UI thread, but the UI thread is busy waiting in Task.Result.

So what we have here is that the UI thread is busy waiting for DoSomething to com-
plete, but DoSomething can’t complete until the UI thread frees up—a classic deadlock.
If we just add ConfigureAwait(false) to the await, we get the following.

Listing 11.13  Deadlock prevented by using ConfigureAwait(false)

private void button1_Click(object sender, EventArgs ea)
{
 var task = DoSomething();
 label1.Text = task.Result;
}

private async Task<string> DoSomething()
{
 await Task.Delay(500).ConfigureAwait(false);
 return "done";
}

Now, in button1_Click, the UI thread blocks waiting for DoSomething to complete just
like in listing 11.12. But this time, after Task.Delay completes, DoSomething continues
to run on the thread pool and not the UI thread. This means DoSomething will com-
plete in the background, Task.Result will stop blocking and return the result, and
everything will just work.

Added ConfigureAwait

158 Chapter 11  Controlling on which thread your asynchronous code runs

So if just dropping ConfigureAwait(false) mechanically everywhere prevents
deadlocks, why am I so against it? First, in this case, there’s an easier fix: if we don’t mix
asynchronous and blocking operations and just stick to using await, we don’t have that
problem.

Listing 11.14  Deadlock prevented by using await

private async void button1_Click(object sender, EventArgs ea)
{
 var result = await DoSomething();
 label1.Text = result;
}

private async Task<string> DoSomething()
{
 await Task.Delay(500);
 return "done";
}

We solved this problem by using await instead of reading Task.Result. Now
button1_Click does not block the thread until DoSomething completes, and we have
no deadlock. Note that using await isn’t always possible, and we did change the way
the program operates in case there’s an exception in DoSomething. We’ll cover those
problems in a bit, but first, let’s see what happens if we introduce ConfigureAwait to
this version of the code.

Listing 11.15  WinForms code with ConfigureAwait(false) everywhere

private async void button1_Click(object sender, EventArgs ea)
{
 var result = await DoSomething().ConfigureAwait(false);
 label1.Text = result;
}

private async Task<string> DoSomething()
{
 await Task.Delay(500).ConfigureAwait(false);
 return "done";
}

In this listing, we added ConfigureAwait(false) to the first await. This means the code
after the await will run in the thread pool instead of taking up the UI thread, but this
code modifies the UI (now from the wrong thread), and we get an InvalidOperation
Exception exception.

To make this code work with ConfigureAwait(false), we need to use Control
.BeginInvoke, like we did in listing 11.3 where we didn’t use await at all.

Changed to await

Adds
ConfigureAwait

Exception

	 159Breaking away—ConfigureAwait(false)

Listing 11.16  WinForms code that works with ConfigureAwait(false) everywhere

private async void button1_Click(object sender, EventArgs ea)
{
 var result = await DoSomething().ConfigureAwait(false);
 label1.BeginInvoke((Action)(()=>
 {
 label1.Text = result));
 });

}

private async Task<string> DoSomething()
{
 await Task.Delay(500).ConfigureAwait(false);
 return "done";
}

In this listing, because the code after the await no longer runs in the UI thread (due to
our usage of ConfigureAwait(false)), we had to use other means to run the code that
updates the UI on the UI thread, and this looks very much like code that doesn’t use
await at all, which shows us that ConfigureAwait(false) outright negates the benefits
of await.

But ConfigureAwait isn’t totally evil. If we only use ConfigureAwait(false) on the
await inside DoSomething, everything still works.

Listing 11.17  WinForms code with ConfigureAwait(false) only in non-UI methods

private async void button1_Click(object sender, EventArgs ea)
{
 var result = await DoSomething();
 label1.Text = result;
}

private async Task<string> DoSomething()
{
 await Task.Delay(500).ConfigureAwait(false);
 return "done";
}

Here, inside DoSomething, we break out of the UI context, and the return line will run
on the thread pool. But the await in button1_Click (that does not use Configure
Await(false)) will return us to the UI thread, and the line that modifies the label will
work.

Also note that the DoSomething method in this listing is exactly the same as the
one in listing 11.12, so ConfigureAwait(false) can be beneficial if you don’t know
if your caller is asynchronous, like in listing 11.16, or blocking, like in listing 11.13,
as would commonly happen if you were writing a library. Note that ConfigureAwait
(false) works here because DoSomething doesn’t access the UI itself and thus doesn’t
care in what context the code after the await runs.

ConfigureAwait

Sets label text
on UI thread

No ConfigureAwait—
return to UI context

No exception

160 Chapter 11  Controlling on which thread your asynchronous code runs

Remember that even in libraries, you often do care about the context (and thread)
in which your code runs. An obvious example is a library designed to be used specifi-
cally in a UI application. A less obvious example is a library that uses callbacks to call the
application that uses it. Even if the library doesn’t care in which thread it runs, the code
inside the application’s callback might.

Before we wrap up our discussion of ConfigureAwait(false), I’ll mention how
we can solve our deadlock without using ConfigureAwait. This deadlock, in its gen-
eral form—UI waiting for something that is waiting for UI—has existed ever since we
started making UI applications; it predates async/await, it predates .NET and C#, it
even predates asynchronous IO in the Windows operating system. And so, unsurpris-
ingly, there is a standard solution for this problem already built into WinForms (and
WPF and all other UI frameworks I know about). This solution is to let the UI han-
dle events (or pump messages, in Windows API terminology) while we are waiting for
the background task to complete. In WinForms, we do this by calling the Application
.DoEvents method.

Listing 11.18  Prevent the deadlock with DoEvents

private void button1_Click(object sender, EventArgs ea)
{
 var task = DoSomething();
 while(!task.IsCompleted)
 Application.DoEvents();
 label1.Text = task.Result;
}

private async Task<string> DoSomething()
{
 await Task.Delay(500)
 return "done";
}

This works exactly like we expected our original code in listing 11.11 would work. It
doesn’t deadlock, the button1_Click method isn’t asynchronous, and as an added
benefit, the UI doesn’t freeze until DoSomething completes.

A note about DoEvents
Note that the DoEvents loop will take 100% CPU (of one core) while waiting. It does
not affect your app (specifically your app’s UI thread) because this loop will run any UI
events as soon as possible, but it does take resources that could be used by another
app and prevent the CPU core from switching to idle power saving mode. As such, it is not
recommended to use DoEvents; yet, it is better than having a deadlock. It’s mostly okay
to use a DoEvents here because we know we are only waiting for half a second, and the
effect on the system will be minimal, but we need to consider this every time we write
DoEvents loops.

Processes events
while waiting

	 161More ConfigureAwait options

To summarize, my suggested rules for using ConfigureAwait(false) are

¡	If you are writing application code, avoid using ConfigureAwait(false); the
default behavior is there for a reason.

¡	If your code is only designed to run in environments that don’t use
SynchronizationContext (for example, Console apps and ASP.NET core), don’t
use ConfigureAwait(false).

¡	If you are writing library code, and you don’t care in which context your code
runs, use ConfigureAwait(false) on every await.

¡	If you want to leave the current context, use Task.Run and not ConfigureAwait
(false), because ConfigureAwait(false) does nothing if the Task is already
completed.

There are some unit-testing frameworks that will not work unless you always use
ConfigureAwait(false). I personally think this is a bug in the unit-testing framework,
and I will let you decide if it’s better to change the threading behavior of the app to
compensate for a technical bug in your unit-test framework or to use a different unit–
test framework.

After all this talk about ConfigureAwait(false), you may be curious about
ConfigureAwait(true). ConfigureAwait(true) is the default behavior and has no
effect on your code whatsoever (except for silencing static code analyzers that complain
about not using ConfigureAwait(false)).

11.4	 More ConfigureAwait options
.NET 8 added a new version of ConfigureAwait with new and exciting options that fur-
ther complicate things. Those options are implemented as an overload of Configure
Await that accepts a ConfigureAwaitOptions parameter. Unfortunately, while useful
in specialized cases, all those options have hidden complexities, and I recommend not
using them in normal application code.

Just in case you encounter them in code you have to debug, these are the options,
each with its biggest pitfall identified:

¡	None—Calling ConfigureAwait(ConfigureAwaitOptions.None) is equivalent to
ConfigureAwait(false), that is, it changes the behavior of await and makes it
run continuations on the thread pool. I recommend using the old Configure
Await(false) and not the new ConfigureAwait(ConfigureAwaitOptions.None).
The new version is somehow even worse at actually saying what it does (consid-
ering the meaning of “none” in the English language, I would expect None to do
nothing, but it changes the behavior), and the old one is at least more concise.

¡	ContinueOnCapturedContext—This value keeps the default await behavior;
using it by itself does nothing. It is required because the ConfigureAwait
Options options are flags, which means this can be combined together, and with
None being the default. All the other options also include the ConfigureAwait
(false) behavior unless you combine them with the ContinueOnCaptured
Context option.

162 Chapter 11  Controlling on which thread your asynchronous code runs

¡	ForceYielding—This option makes await always return and schedule the con-
tinuation to run later, even if it doesn’t have to because the Task has already com-
pleted. This does not make the code you are calling run in the background—it
just switches to the thread pool after the await. Using this option is equivalent to
writing await Task.Yield().ConfigureAwait(false); in the next line.

¡	SuppressThrowing—This option makes await ignore some errors. It is meant for
situations where you don’t care if the operation you run succeeds or fails. How-
ever, it will only ignore errors that occur after the first await inside the method
you are calling, so it doesn’t guarantee that no exception will be thrown. Also, it
will throw an exception at run time if you try to use it with a Task<T>.

In conclusion, out of the four new options, None and ContinueOnCapturedContext
are already more concisely supported with the old ConfigureAwait. ForceYielding
is not very useful, and SuppressThrowing doesn’t do what its name implies. Also, just
to add another pitfall, the new ConfigureAwait is not supported on ValueTask and
ValueTask<T>, so I recommend sticking with the older ConfigureAwait(bool).

11.5	 Letting other code run: Task.Yield
Internally, both events generated by Windows (mouse moves, keyboard clicks, and so
forth) and work queued by Control.BeginInvoke and the SynchronizationContext
are stored in a queue called the input queue (because its primary function is to deliver
input from the UI to the app).

We’ve seen in listing 11.18 that in WinForms, we can use Application.DoEvents
to let the framework handle events and remain responsive. DoEvents simply reads all
pending entries in the input queue, returning only when all the events are handled.

The generic async/await compatible version of DoEvents is Task.Yield. When you
await Task.Yield() in a UI thread, the code after the await is added to the end of the
input queue and runs after all the other events that are already pending. The following
listing shows what happens if we build a WinForms app that counts forever.

Listing 11.19  Trying to count forever and freezing the app

private void button1_Click(object sender, EventArgs ea)
{
 int i=0;
 while(true)
 {
 label1.Text = (++i).ToString();
 }
}

With this method, when the user clicks a button, the program will loop forever, count-
ing and setting the number into a label’s Text property. If you run this code, the pro-
gram will just freeze. The UI thread will be busy counting and will not handle input
queue events such as mouse clicks. Also, you will not see the content of the label

	 163Task schedulers

change because the UI thread will not handle requests to redraw the label. We can use
the same strategy that worked so well in listing 11.18 and fix this with DoEvents.

Listing 11.20  Counting forever without freezing the app

private void button1_Click(object sender, EventArgs ea)
{
 int i=0;
 while(true)
 {
 label1.Text = (++i).ToString();
 Application.DoEvents();
 }
}

Now at every iteration, the method calls DoEvents. This will handle all the pending
events (including the label’s redraw events). The app will remain responsive, and the
label with show the changing number. Note that our code will use 100% of a CPU core
doing the counting, so unlike listing 11.18, it is not negatively affecting the system
by calling DoEvents. We could also go the async/await route and do this with Task
.Yield.

Listing 11.21  Counting forever without freezing the app using await

private async void button1_Click(object sender, EventArgs ea)
{
 int i=0;
 while(true)
 {
 label1.Text = (++i).ToString();
 await Task.Yield();
 }
}

In this version, at the end of every iteration, the method will queue itself at the end of
the input queue and return. It is a very different technique than DoEvents, but with
exactly the same results.

When deciding where to run the code after it, await Task.Yield() follows the same
rules listed in this chapter, so you can use them to figure out in which thread the code
will run in your specific situation.

11.6	 Task schedulers
In this chapter, I repeatedly wrote that await uses SynchronizationContext. Well,
I left something out: async/await has its own infrastructure for deciding on which
thread to run code. This infrastructure is based on the TaskScheduler class. Classes
derived from TaskScheduler, like classes derived from SyncronizationContext, know
how to take a task created by await and schedule it to run on some thread sometime
in the future.

164 Chapter 11  Controlling on which thread your asynchronous code runs

The default task scheduler (accessible via the TaskScheduler.Default static prop-
erty) always queues your code to run on the thread pool. If you call await in a thread with
a SynchronizationContext, the compiler will create a scheduler that will use its Post
method to schedule the code (the TaskScheduler.FromCurrentSynchronization
Context does this). You can get the current scheduler by reading TaskScheduler
.Current.

Unlike SynchronizationContext, you can’t set the current TaskSchuduler, but you
can set the task scheduler when you call Task.Run, ContinueWith, or any of the other
async/await compatible ways to run code. For example, this code will run a lambda
half a second later on the thread pool:

Task.Delay(500).ContinueWith(t=>Console.WriteLine("Hello"));

This code uses ContinueWith to run after the timeout is passed to Task.Delay. Because
we didn’t pass the optional TaskScheduler parameter, this will use the default sched-
uler that will run the code on the thread pool. However, if we are running in a thread
with SynchronizationContext, we can create a task scheduler that uses it:

Task.Delay(500).ContinueWith(t=>Console.WriteLine("Hello"),

 TaskScheduler.FromCurrentSynchronizationContext());

Here we passed the optional TaskScheduler parameter. Specifically, we passed a sched-
uler created from the current SynchronizationContext, so the lambda will run on
this thread. If there’s no current SynchronizationContext, or the Synchronization
Context can’t be wrapped in a TaskScheduler, FromCurrentSynchronizationContext
will throw an exception. In the current version of .NET at the time of this writing (ver-
sion 8), this only happens if there is no current SynchronizationContext (that is,
SynchronizationContext.Current is null).

Just like with SyncronizationContext, ConfigureAwait(false) will make await
ignore the current TaskScheduler and use the default scheduler instead.

This completes the rules for which thread runs the code after an await, in this order:

¡	If the task is already complete, the code continues to run immediately in the
same thread. ConfigureAwait(false) has no effect in this case.

¡	If the current thread has a SynchronizationContext set, and ConfigureAwait
(false) is not used, the SynchronizationContext will be used.

¡	If the current task has a TaskScheduler associated with it, and ConfigureAwait
(false) is not used, the TaskScheduler will be used.

¡	If ConfigureAwait(false) was called, or if the thread has no Synchronization-
Context and no TaskScheduler, the default task scheduler will be used, and the
code will run in the thread pool.

	 165Summary

Summary
¡	The simplified rules regarding which thread runs the code after an await are as

follows:
–	 In UI apps (WinForms and WPF), if you are using await in a UI thread, and

you don’t use ConfigureAwait(false), the code after the await will run in
the same thread.

–	 In ASP.NET classic (not ASP.NET Core), if you are using await in a thread that
is processing a web request, and you don’t use ConfigureAwait(false), the
code after the await will run in the same thread.

–	 In all other cases, the code after the await will run in the thread pool.
¡	However, the real rules are

–	 If the task is already complete, and ConfigureAwait(ConfigureAwaitOptions
.ForceYielding) was not used, the code continues to run immediately in the
same thread, ConfigureAwait(false) has no effect in this case.

–	 If the current thread has a SynchronizationContext set, and Configure
Await(false) is not used, the SynchronizationContext will be used.

–	 If the current task has a TaskScheduler associated with it, and Configure
Await(false) is not used, the TaskScheduler will be used.

–	 If ConfigureAwait(false) was called, or the thread has no Synchronization
Context and no TaskScheduler, the default task scheduler will be used, and
the code will run in the thread pool.

¡	If you are not using third-party frameworks or writing your own
SynchronizationContext or TaskScheduler, those two sets of rules produce
the same results.

¡	ConfigureAwait(false) makes await ignore the current Synchronization-
Context or TaskScheduler. This may prevent deadlocks but can make using
await much less convenient.

¡	The rules for using ConfigureAwait(false) are as follows:
–	 If you are writing application code, avoid using ConfigureAwait(false). The

default behavior is there for a reason.
–	 If your code needs to continue running on the same thread, for example, if

you change the thread’s settings or you use thread local storage, don’t use
ConfigureAwait(false).

–	 If your code is only designed to run in environments that don’t use
SynchronizationContext (for example, Console apps and ASP.NET core),
don’t use ConfigureAwait(false).

–	 If you are writing library code, and you don’t care in which context your code
runs, use ConfigureAwait(false) on every await.

–	 If you want to leave the current context, use Task.Run and not Configure
Await(false) because ConfigureAwait(false) does nothing if the Task is
already completed.

166

12Exceptions and
async/await

This chapter covers

¡	How exceptions work with asynchronous code
¡	How to fix lost exceptions
¡	Handling exceptions in async void methods

In this chapter, we are going to talk about exceptions. We’ll discuss how they work in
asynchronous code and the differences in how they work in non-asynchronous code.
In transitional code, exceptions bubble up the call stack. As we’ve seen in chapters
3, 5, and 11, in asynchronous code, callbacks are constantly registered to be called
later, often from other threads; thus, the call stack no longer describes the flow of
your code. This knowledge and the knowledge about what async/await does to
mitigate this are important when debugging problems related to exceptions in asyn-
chronous code, that is, when debugging any situation where the asynchronous code
fails in a non-straightforward way. We’ll also cover some pitfalls you should be aware
of regarding exceptions.

	 167Exceptions and asynchronous code

12.1	 Exceptions and asynchronous code
Exceptions use the call stack. The call stack is a data structure (specifically a stack)
used by the system to implement the concept of methods (or functions or procedures,
depending on your programming language). When you call a method, the system
pushes the memory address of the next instruction into the call stack, and when you
execute a return statement, the system jumps to the address at the top of the stack
(this explanation is a gross oversimplification because this book is not about processor
architecture).

When an exception is thrown, if it’s inside a try block with an appropriate catch
clause, control passes to that catch clause. If the exception is thrown outside of a try
block, or that try block has no appropriate catch clause, the exception bubbles up the
call stack until it finds an appropriate catch clause. If it gets to the beginning of the call
stack without finding a catch clause, the program crashes.

This exception bubbling happens in run time and uses the program’s call stack, not
the structure of the source code. For example, let’s take a look at some code where the
structure of the code doesn’t match the runtime behavior:

public void MyMethod()
{
 try
 {
 Win.Click += ()=>
 {
 throw new NotImplementedException();
 };
 }
 catch
 {
 Console.WriteLine("In catch clause");
 }
}

In this code, while the throw statement is located inside the try block from a textual
perspective, it doesn’t run as part of this method. The lambda added to the Click
event is separated by the compiler into a different method (like we’ve seen in chapter
2). It doesn’t run inside our try block. The only thing that runs inside the try is attach-
ing the Click event. When and if the code in the lambda runs, it will be called by the
code that triggers the Click event, and the exception will bubble up into that code and
not into our code.

async methods have the same problem because, as we’ve seen in chapter 3, await is
equivalent to calling ContinueWith. So if we take a simple async method that throws an
exception, we get

try
{
 await File.ReadAllBytesAsync("file.bin");

168 Chapter 12  Exceptions and async/await

 throw new NotImplementedException();
}
catch
{
 Console.WriteLine("In catch clause");
}

This code awaits a call to ReadAllBytesAsync and then always throws an exception. If
we translate await to ContinueWith, we get

try
{
 File.ReadAllBytes("file.bin").ContinueWith(()=>
 {
 throw new NotImplementedException();
 });
}
catch
{
 Console.WriteLine("In catch clause");
}

And this code has the same problem as the event handler example. The throw line is
in the lambda (that is passed to ContinueWith), so it’s not inside the try block. For this
reason, the compiler will also duplicate the try-catch to make it look like await works
seamlessly with try-catch blocks:

try
{
 File.ReadAllBytesAsync("file.bin").ContinueWith(()=>
 {
 try
 {
 throw new NotImplementedException();
 }
 catch
 {
 Console.WriteLine("In catch clause");
 }
 });
}
catch
{
 Console.WriteLine("In catch clause");
}

Here the compiler knows where the catch clause is, so it can do all those transforma-
tions to make try-catch work. But what if the try statement is not in our methods but
in code that calls us? In this case, you can’t know at compile time which catch clause
to use, and the compiler can’t just copy it into the continuation code. Let’s see what
happens with a simple async method that can throw an exception:

	 169Exceptions and asynchronous code

public async Task<int> MyMethod()
{
 throw new NotImplementedException();
}

This is an async method that just throws an exception, and it translates to

public Task MyMethod()
{
 throw new NotImplementedException();
}

The compiler didn’t do anything! Remember, marking a method as async does not
make it asynchronous; it’s just a flag for the compiler to enable all the processing
required for supporting await. If you don’t use await, the only thing the compiler
does is wrap the return value in a Task object. Note that the compiler didn’t need
to change the code to make exceptions behave like in a non-async method; calling
this method will throw the exception just like a non-async method, which is what we
wanted.

Now let’s take a look at a method that uses await:

public async Task<int> MyMethod()
{
 await File.ReadAllBytesAsync("file.bin");
 throw new NotImplementedException();
}

This is a method that awaits ReadAllBytesAsync and then throws an exception. In this
case, to support reporting the error to the calling code, the compiler will add a try-
catch that will catch the exception and stash it in the returned task:

public async Task<int> MyMethod()
{
 var result = new TaskCompletionSource<int>();
 File.ReadAllBytesAsync("file.bin").ContinueWith(t=>
 {
 try
 {
 throw new NotImplementedException();
 }
 catch(Exception ex)
 {
 result.TrySetException(new AggregateException(ex));
 }
 });
}

Here, the compiler added a try block inside the continuation (the code that it passed
to ContinueWith). Note that, like in our previous example, the compiler did not add
a try block to the part before the first await and the call to ReadAllBytesAsync itself.

170 Chapter 12  Exceptions and async/await

If an error occurs before the first await, the method will throw a regular exception.
Only if the error occurs after the first await will the exception be caught by compiler
generated code and stored in the returned Task. This is how most asynchronous code
works; an asynchronous method can both throw a regular exception and report an
error using the Task object (by setting the Task’s Status property to Faulted and stor-
ing the exception in the Task.Exception property).

If you use await when you call the method, both situations look the same. But if you
are not using await (for example, if you are collecting multiple tasks and using Task
.WhenAny or Task.WhenAll), you need to handle both exceptions thrown by the asyn-
chronous methods and exceptions stored in the returned Task. Also, remember that
the continuation usually runs after the method returns, so in case of an error, the Task
returned by the asynchronous method will be in the Created, WaitingForActivation,
or Running state when it’s returned, and it will only change to the Faulted state later.

There’s just one difference between using await to rethrow the exception or using
the Task.Exception property, and that is how they use the AggregateException.

12.2	 await and AggregateException
The Task.Exception property always stores an AggregateException. The Aggregate-
Exception class, as the name suggests, is an exception class that stores multiple other
exceptions inside it.

Task uses AggreggateException because a Task can represent the result of multiple
operations running in parallel (for example, multiple asynchronous operations passed
to Task.WhenAll). Because more than one of those background operations can fail, we
need a way to store multiple exceptions.

In practice, this feature is almost never used. In fact, this feature is so rarely used that
if you use await, and the Task you are awaiting fails, the await operator will always throw
the first exception inside the AggregateException and not the AggregateException
itself. If there is more than one exception inside, the AggregateException await will
still throw just the first one and ignore the rest. All exceptions except for the first one,
along with any information stored inside them, will be lost. Here is code showing how
await throws the stored exception:

var tcs = new TaskCompletionSource();
tcs.SetException(new NotSupportedException());
Console.WriteLine("In tasks: "+tcs.Task.Exception.GetType());
try
{
 await tcs.Task;
}
catch(Exception ex)
{
 Console.WriteLine("Thrown: "+ex.GetType());
}

This program stores a NotSupportedException in a Task using TaskCompletion-
Source (we talked about creating your own tasks with TaskCompletionSource back in

AggregateException

Will throw the
inner exception

NotSupportedException

	 171Exceptions and async void methods

chapter 10). Then we check to see what exception is stored inside the Task and get an
AggregateException wrapping our exception. However, we then use await because
the Task in the Failed state await will throw an exception, but it will throw the inner
NotSupportedException and not the AggregateException.

12.3	 The case of the lost exception
We’ve seen that the compiler will generate code to catch exceptions and stash them
inside the Task. And await will rethrow that exception. But what happens if, for some
reason, we don’t use await?

The answer is nothing. The compiler-generated code will catch the exception and
store it in the Task. And that’s it. If no one reads the exception from the Task (either by
using await or by reading the Task’s Exception property), the exception will be ignored.

Let’s take a look at another piece of code:

Public async Task MethodThatThrowsException()
{
 await Task.Delay(100);
 throw new NotImplementedException();
}

Public async Task MethodThatCallsOtherMethod()
{
 MethodThatTHrowsException();
}

Here we have two methods. The first method, MethodThatThrowsException, throws
an exception after an await, so the compiler will catch the exception and stash it in
the returned Task. The second method calls the first, but when I wrote it, I forgot the
await, so no one is looking at the retuned Task. The exception was caught in the first
method by the compiler-generated code but ignored by the second method because I
didn’t use await. And so the runtime thinks we handled the exception (because the
compiler generated code caught it), and the code continues to run while ignoring the
error.

If the method that throws the exception is in a library, and you have the “just my
code” feature of the debugger enabled, you won’t even see the exception in the debug-
ger. So if some code in your program seems to stop running with no indication of why,
there’s a good chance someone forgot an await somewhere.

12.4	 Exceptions and async void methods
In async void methods, the method does not return a Task (obviously). Because there
is no Task to stash the exception in, the compiler doesn’t know what to do with the
exception thrown inside the method, so it will not generate the try-catch block we’ve
seen in the previous example. As a result, any exception thrown in the code will bub-
ble up the call stack into the SynchronizationContext that runs the code (we talked
about how SynchronizationContext works in chapter 11). This will most likely crash

172 Chapter 12  Exceptions and async/await

your program. Because of that, it is best practice to handle all exceptions in async
void methods yourself and never let an exception bubble out of it.

Summary

¡	Exceptions use the call stack to find the correct code to run in case of error,
which is a problem for asynchronous code because continuations don’t run in
the same call stack as the code that calls the asynchronous method.

¡	If you use async/await, the compiler will generate code to make it look like
non-async code. It does this by catching exceptions inside async methods and
stashing them in the returned Task. await then throws the exception inside the
continuation, making it look like it was thrown by the await.

¡	Every asynchronous method can throw a normal exception or signal a failure
using the returned Task. await makes both of those failure modes look the same.
If you don’t use await, you need to handle both yourself.

¡	The exception stored inside the Task is an AggregateException, just in case the
Task represents multiple operations. await ignores all but the first exception
inside that AggregateException. If you don’t use await, you need to deal with
this yourself. In rare cases, the Task does represent multiple operations, and if
you care about multiple failures, you can’t use await and need to read the Task
.Exception property yourself.

¡	If you ignore the Task returned by an asynchronous method (by forgetting to use
await, for example), and that method throws an exception, the exception will be
lost.

¡	As a corollary, if code fails in a way that should have been an exception, but you
can’t see that exception, there’s a good chance you forgot an await somewhere.

¡	All the exception support provided by async/await is dependent on the
returned Task. async void methods don’t return a Task and so don’t have this
support. Never throw an exception from or let an exception bubble out of an
async void method.

173

13Thread-safe collections

This chapter covers

¡	The problems encountered when using regular 	
	 collections in a multithreaded program
¡	Concurrent collections
¡	The BlockingCollection class
¡	Asynchronous alternatives to Blocking-
	 Collection

¡	Immutable collections and special considerations 	
	 when using them
¡	Frozen collections

The System.Collections.Generic namespace contains many useful collections;
however, we can’t just use them in a multithreaded application because all those col-
lections are not thread safe. In this chapter, we’ll look at the problems with the sim-
plest way of making collections thread safe—just putting a lock around any access
to the collection. We’ll also talk about the thread-safe alternatives provided by the
.NET library.

174 Chapter 13  Thread-safe collections

Specifically, we’ll examine the concurrent collections added in .NET framework 4,
discuss the immutable collections added in .NET Core (which is the basis for .NET 5
and later), and talk about the frozen collections added in .NET 8. You will also learn
how to use each type of collection and when it’s appropriate to do so. But first, let’s talk
about why you can’t just use the regular collections.

13.1	 The problems with using regular collections
The .NET library provides many useful collection classes in the System.Collections
.Generic namespace. Those collections support multiple concurrent reads, but they
can be corrupted and produce unexpected results if there are multiple concurrent
writers or if different threads try to read and write simultaneously.

Also, according to the official documentation, iterating over the collection is intrin-
sically not thread safe, which means that if you iterate over the collection, either with a
loop such as foreach or a Linq expression, you must prevent any writes by other threads
to the collection for the entire duration of the loop. To use those collections in a mul-
tithreaded program, you must take care of synchronization yourself, typically by using
locks, and doing so correctly when using collections is often nontrivial.

For example, let’s consider a very common use case. We want to use a Dictionary
<TKey,TValue> as a cache. When we need some data item, we first check whether it’s in
the cache, and if not, we create and initialize the item, probably by retrieving it from an
external service or by precalculating some stuff (the reason we use a cache to begin with
is that initializing the item takes a long time). We’ll start with the single threaded code
first and add locking later.

Listing 13.1  Simple, non–thread-safe cache

if(!dictionary.TryGetValue(itemId, out var item))
{
 item = CreateAndInitializeItem(itemId);
 dictionary.Add(itemId,item);
}

This code tries to retrieve an item from the dictionary, and if the item isn’t already
there, it calls CreateAndInitializeItem to create and initialize the item. After cre-
ating an item, the code calls Add to add the item to the dictionary so it’s available the
next time we need it.

This is a perfectly good way to implement a simple in-process cache for single-
threaded applications, but this code is very much not thread safe. Calling TryGetValue
from multiple threads simultaneously is explicitly allowed, but calling Add concurrently
or calling Add and TryGetValue at the same time can produce unexpected results and
even corrupt the dictionary.

Let’s make this thread safe. We’ll start with the simplest option—placing a lock
around the entire block.

	 175The problems with using regular collections

Listing 13.2  Thread-safe cache with a single lock

Item item;
lock(_dictLock)
{
 if(!dictionary.TryGetValue(itemId, out item))
 {
 item = CreateAndInitializeItem(itemId);
 dictionary.Add(itemId,item);
 }
}

This code is the same as listing 13.1, except it uses a lock to prevent multiple threads
from running it simultaneously. This does make our code thread safe, but at the cost
of locking the entire cache every time we run it. If the item is already in the dictionary,
the lock will be short, and everything will be fine. However, if we need to create a new
item, the entire cache will remain locked for the entire duration of the initialization,
meaning that other threads that are working on completely different items will have to
wait every time a new item has to be initialized. To solve this problem, we must release
the lock while initializing the item.

Listing 13.3  Non–thread-safe cache with lock released during initialization

Item item;
bool exists;
lock(_dictLock)
{
 exists = dictionary.TryGetValue(itemId, out item);
}
if(!exists)
{
 item = CreateAndInitializeItem(itemId);
 lock(_dictLock)
 {
 dictionary.Add(itemId,item);
 }
}

This code has two lock blocks, one protecting the TryGetValue call and the other
protecting the Add call. Those locks ensure that Dictionary<T> is never called from
multiple threads at the same time, which means we will not corrupt the dictionary.
Unfortunately, this does not make our code thread safe. This code is actually almost
guaranteed to fail if multiple threads need to use the same item that is not already in
the cache.

This a common problem, where composing two (or more) thread-safe operations
often does not result in thread-safe code. The call to TryGetValue is now thread safe
because it is protected by the lock, and the call to Add is thread safe for the same reason.
But because we don’t hold a lock for the entire runtime of the code, other threads can
change the dictionary between TryGetValue and Add.

Adds a lock

Lock

Unlock

Lock again

Add—fails if already
added by another thread

176 Chapter 13  Thread-safe collections

If two threads run this code simultaneously for the same item, the first thread will
execute the TryGetValue and discover that the item isn’t in the dictionary, so it will go
on to create and initialize the item. The second thread will then also call TryGetValue
(before the initialization is complete, because the reason we use a cache is that the ini-
tialization takes a long time). In addition, because the first thread didn’t add the item
yet, it will also see that the item is not in the cache and go on to create and initialize
another copy of the item.

Now we have two different threads busy initializing two different copies of the Item
object for the same logical item. One of those threads will finish first and add the item
to the cache by calling Add. The other thread will also finish initializing its copy at some
point and attempt to add it to the cache by calling Add; however, because the first thread
has already added the item, Add will now throw an ArgumentException. Figure 13.1
illustrates the flow of those two threads.

Lock

TryGetValue

Unlock

Lock

TryGetValue

Unlock
Create and initialize

item

Create and initialize
item

Lock

Add

Unlock

Lock

Add

Unlock

The first thread calls
TryGetValue,

discovering the item is
not in dictionary.

The first thread creates
and initializes an item. The second thread calls

TryGetValue; the item
is still not in dictionary.

The second thread creates
and initializes an item.

The first thread finally
finishes the initialization

and adds the item to
the dictionary.

The second thread tries
to add the item to the
dictionary but gets an
exception because the
first thread has already
added the item by now.

Thread 1 Thread 2Time

Figure 13.1  Concurrent initialization of the same item with two threads. The second thread fails
because the first thread already added the item.

To make this code thread safe, we must avoid calling Add if another thread has already
added the item while we were busy initializing it. The easiest option is to replace the

	 177The problems with using regular collections

call to Add with the [] operator (technically, it’s the Item[] property, but I’m going to
call it an operator and not a property because it’s used as an operator). The [] opera-
tor adds a new item if the key does not exist and overrides the existing item if it does.
This solves our exception problem but also introduces a new subtle bug.

Listing 13.4  Thread-safe cache with operator []

Item item;
bool exists;
lock(_dictLock)
{
 exists = dictionary.TryGetValue(itemId, out item);
}
if(!exists)
{
 item = CreateAndInitializeItem(itemId);
 lock(_dictLock)
 {
 dictionary[itemId] = item;
 }
}

This code just replaces dictionary.Add(itemId,item) with dictionary[itemId]=
item, which solves our immediate problem because operator [] will just override the
previous value if it exists; however, this might introduce a bug. Now the first thread
uses its own copy of the Item object, while the second and subsequent threads use the
copy created by the second thread. If the Item object is immutable, and the initializa-
tion always returns an equivalent object for the same key, this can be fine; however, if
the Item object is modified by the first thread, those changes will be lost.

To make sure all the threads use the same Item object, we have no choice but to
recheck the dictionary after initialization and, if another thread has updated the dictio-
nary first, use the value from the first thread.

Listing 13.5  Thread-safe cache with lock released during initialization

Item item;
bool exists;
lock(_dictLock)
{
 exists = dictionary.TryGetValue(itemId, out item);
}
if(!exists)
{
 item = CreateAndInitializeItem(itemId);
 lock(_dictLock)
 {
 if(dictionary.TryGetValue(itemId,
 out var itemFromOtherThread))
 {
 item = itemFromOtherThread;

Lock

Unlock

Lock again

Overrides changes if already
added by another thread

Lock

Unlock

Lock again

Tests whether already
added by another thread

178 Chapter 13  Thread-safe collections

 }
 else
 {
 dictionary.Add(itemId,item);
 }
 }
}

Here, we check the dictionary again instead of blindly calling Add or operator [] after
the initialization. If we find the item is now in the dictionary, we drop the copy we ini-
tialized and use the one from the dictionary (because we want all threads to use the
same object). We add the item only if it is still not in the dictionary.

As you can see, this code is quite complicated and difficult to follow compared to the
single-threaded version in listing 13.1. Luckily, we don’t have to write it because we have
the concurrent collections.

13.2	 The concurrent collections
The collections in the System.Collections.Concurrent are thread-safe versions of
the most popular collections. The concurrent collections employ clever fine-grained
locking strategies and lockless techniques to stay thread safe even when the collection
is accessed by many threads simultaneously. This means all the methods and properties
of the concurrent collection can be used concurrently from different threads without
causing corruptions or unexpected behavior.

The concurrent collections have a different interface than the collections we all
know and love from the System.Collections.Generic namespace because, as we’ve
seen earlier in this chapter, just making all the normal collection’s methods callable
from multiple threads would not, by itself, result in thread-safe code.

This section covers the commonly used concurrent collections, starting with
ConcurrentDictionary<TKey,TValue>, that will elegantly solve the problems we’ve
talked about in this chapter so far.

13.2.1	 ConcurrentDictionary<TKey,TValue>

Unsurprisingly, ConcurrentDictionary<TKey,TValue> is a thread-safe alternative for
Dictionary<TKey,TValue>, but because of the problems we’ve seen when trying to
use locks with Dictionary<TKey,TValue>, it has a slightly different interface geared
toward solving multithreaded problems. Let’s go back to the original single-threaded
code of our Dictionary<TKey,TValue>-based cache.

Listing 13.6  Non–thread-safe cache again

if(!dictionary.TryGetValue(itemId, out var item))
{
 item = CreateAndInitializeItem(itemId);
 dictionary.Add(itemId,item);
}

	 179The concurrent collections

This is the same code from listing 13.1. It tests whether an item is in the dictionary-based
cache, and if not, it creates and initializes a new item object and adds it to the cache.

Now let’s do the minimal amount of work to replace Dictionary<TKey,TValue> with
ConcurrentDictionary<TKey,TValue>. The ConcurrentDictionary<TKey,TValue>
class has a TryGetValue method that works the same as Dictionary<TKey,TValue>’s
TryGetValue. If a value with the provided key exists in the dictionary, it returns true
and puts the value in an out parameter. If a value with the key does not exist in the
dictionary, it returns false.

But ConcurrentDictionary<TKey,TValue> doesn’t have an Add method because, as
we saw in listing 13.3, in multithreaded code, there’s aways a chance another thread
will add an item right before we call Add and cause it to fail with an exception. For
this reason, ConcurrentDictionary<TKey,TValue> doesn’t have an Add method—it is
replaced with TryAdd.

As we’ve seen, no matter how small the time window between TryGetValue and Add
is, there is always a chance that another thread will manage to add the item in that time-
frame. To address this problem, we must treat the case where a key is already present in
the dictionary, not as an exceptional error condition, but as a normal occurrence. This
is what TryAdd does.

 This difference between Add and TryAdd manifests itself in a tiny change in the
method interface. While Add will throw an exception if the key is already in the dictio-
nary, TryAdd will only return false.

Just replacing Add with TryAdd in the code from listing 13.6 gives this simple code that
is thread safe but has a small problem. (Hint: It’s the same problem from listing 13.4.)

Listing 13.7  Thread-safe cache with ConcurrentDictionary.TryAdd

if(!dictionary.TryGetValue(itemId, out var item))
{
 item = CreateAndInitializeItem(itemId);
 dictionary.TryAdd(itemId,item);
}

This listing replaces Add with TryAdd. And because TryAdd doesn’t throw an exception
if the key is already in the dictionary, this code works and is thread safe. It just has a
variation of the problem we had in listing 13.4. If multiple threads initialize the same
item at the same time, each will have its own copy of the Item object. If the Item object
isn’t immutable, or all those copies are not identical, this can cause a real problem.

What we really want is to combine TryGetValue and TryAdd into a single atomic
operation in a way that eliminates this problem. ConcurrentDictionary<TKey,TValue>
does this with the GetOrAdd method.

Listing 13.8  Thread-safe cache with ConcurrentDictionary.GetOrAdd

var item = dictionary.GetOrAdd(itemId,CreateAndInitializeItem);

180 Chapter 13  Thread-safe collections

This single line calling to GetOrAdd is equivalent to the 21 lines in listing 13.5. If the
item is already in the dictionary, it will return the item. If not, it will call CreateAnd
Initialize to create the item. If multiple threads call GetOrAdd before the item
completed initialization and was added to the dictionary, all of them will run Create
AndInitialize, but GetOrAdd will return the same object in all threads.

GetOrAdd has a version that accepts the value to add to the dictionary as the second
parameter, as well as the version we used that accepts a delegate to call to initialize the
value. ConcurrentDictionary<TKey,TValue> uses fine-grained locking so that GetOr
Add calls for different keys can run concurrently.

Note that if you use the version of the method that accepts a delegate, and you call
GetOrAdd from multiple threads simultaneously, the initialization code can run more
than once. The first thread to finish will get to add the value to the dictionary, and the
result of the initialization code from other threads will be ignored. You should be aware
whether your item requires cleanup or if you can’t run the initialization code multiple
times.

ConcurrentDictionary<TKey,TVale> also has a TryRemove method that will remove
the value and return true if the value existed and was removed. However, it will return
false if the value doesn’t exist in the dictionary. Having a TryRemove instead of a Remove
method solves the same kind of race condition we’ve seen when we’ve talked about Add
and TryAdd.

And finally, ConcurrentDictionary<TKey,TVale> also has a TryUpdate method.
This method solves a problem where one thread might overwrite data written by
another thread. As an example of this problem, let’s write a method that increments a
value in the dictionary.

Listing 13.9  Non–thread-safe increment

private ConcurrentDictionary<string, int> _dictionary = new();

public void Increment(string key)
{
 int prevValue = _dictionary[key];
 _dictionary[key] = prevValue+1;
}

This method reads the value associated with a key, adds one to the value, and writes the
new value into the dictionary.

This code also has a race condition bug. Let’s say the current value for a given key
is 1, and we call Increment simultaneously from two different threads. The expected
result is that the value will be 3 (we started with 1 and incremented it twice), but if we’re
unlucky with our timing, we might get the following sequence:

1	 Thread 1 reads the value and gets 1.

2	 Thread 2 reads the value. Because the first thread hasn’t written the new value
yet, it also gets 1.

	 181The concurrent collections

3	 Thread 1 increments and saves the value; the value in the dictionary is now 2.

4	 Thread 2 increments and saves the value; the value in the dictionary is still 2.

To solve this problem, we must either add a lock around the entire operation or at least
have a way to detect this problem so we can correct it. This is what TryUpdate does.

Listing 13.10  Thread-safe increment with ConcurrentDictionary.TryUpdate

private ConcurrentDictionary<string, int> _dictionary = new();

public void Increment(string key)
{
 while(true)
 {
 int prevValue = _dictionary[key];
 if(_dictionary.TryUpdate(key, prevValue+1, prevValue))
 break;
 }
}

Now the method enters a loop, and it reads the current value into the prevValue vari-
able. It then calls TryUpdate with both the new value (prevValue+1) and the old value
(prevValue). If the current value in the dictionary is still prevValue, TryUpdate will
update the value and return true. This will make our code break out of the loop. But if
someone else changed the value in the dictionary, TryUpdate will leave the dictionary
unchanged and will return false, which will make our code repeat the loop and retry
incrementing the value until it succeeds.

ConcurrentDictionary<TKey,TValue> doesn’t have asynchronous interfaces, but it
only blocks for a very short time, and it works very well with asynchronous code.

13.2.2	 BlockingCollection<T>

BlockingCollection<T> adds blocking producer–consumer operations on top of
another collection. Basically, it adds the ability to wait until an item becomes available.
The options for the collection backing a BlockingCollection<T> are Concurrent-
Queue<T>, ConcurrentStack<T>, and ConcurrentBag<T>. (We’ll talk about them more
in the next section.)

The default option, and most used by an enormous margin, is ConcurrentQueue<T>.
A BlockingCollection<T> backed by a ConcurrentQueue<T> keeps the item order—
like in a queue, the first item in is the first item out. We’ve already seen back in chapter 8
how it can be used as the basis for a very simple and effective work queue.

The second used option is ConcurrentStack<T>. A BlockingCollection<T> backed
by a ConcurrentStack<T> acts like a stack—the last item to be added is the first item
out. This is useful if you have a multithreaded algorithm that requires a thread-safe
stack, which makes the consumer wait until another thread adds items to the stack if the
stack is empty.

182 Chapter 13  Thread-safe collections

The last option, ConcurrentBag<T>, is rarely used. ConcurrentBag<T> is a specialized
collection that is optimized for the case where the same thread both reads and writes
from/to the collection (more about this later in this chapter).

Apart from adding the ability to wait until an item is available, Blocking
Collection<T> also lets you specify the maximum size of the collection; this is useful
in preventing the producer from getting too far ahead of the consumer. This feature is
called bounded capacity.

The most common usage for BlockingCollection<T> is as a work queue (like our
work queue example in chapter 8, where we wrote a work queue implementation with a
single background thread). Let’s extend the code from chapter 8 and write a Blocking
Collection<T>-based queue with multiple consumer threads.

Listing 13.11  BlockingCollection with 10 processing threads

BlockingCollection<int> blockingCollection = new BlockingCollection<int>();
Thread[] workers = new Thread[10];
for(int i=0; i<workers.Length; i++)
{
 workers[i] = new Thread(threadNumber =>
 {
 var rng = new Random((int)threadNumber);
 int count = 0;
 foreach (var currentValue in
 blockingCollection.GetConsumingEnumerable())
 {
 Console.WriteLine($"thread {threadNumber} value {currentValue}");
 Thread.Sleep(rng.Next(500));
 count++;
 }
 Console.WriteLine($"thread {threadNumber}, total {count} items");
 });
 workers[i].Start(i);
}
for(int i=0;i<100;i++)
{
 blockingCollection.Add(i);
}
blockingCollection.CompleteAdding();
foreach (var curentThread in workers)
 curentThread.Join();

This code creates a BlockingCollection<int> to hold the data we need to process
in the background. It then starts 10 background threads to do this processing, and
each thread uses foreach and GetConsumingEnumerable to get the items to process.
To simulate the processing, we just wait a small random amount of time and print the
number. We insert the numbers 0 to 99 into the queue as a stand-in for the data we
want to process.

When we run this code, we see that it works—all the data is processed, each data
item is processed exactly once, and data items are mostly processed in order. The items

Creates 10 worker
threads

Adds 100 items
to process

Signals no more items

Waits for all threads to finish

	 183The concurrent collections

are processed mostly in order because while the BlockingCollection<T> provides the
items in order, timing problems will sometimes cause one thread to overtake a previous
thread, making it look like the two items swapped position.

The bounded capacity feature mentioned earlier is mainly implemented by the Add
method. The Add method adds an item to the collection. If the collection is at maximum
capacity, it will block until some other thread removes an item. The TryAdd method is
similar but adds a timeout (that can be zero). If the collection is at maximum capacity, it
will block until another thread removes an item or until the timeout elapses. If the time
out elapses, TryAdd will fail and return false. If the timeout is zero, TryAdd will always
return immediately.

The Take method returns the next item in the collection and removes it in a sin-
gle thread-safe operation. The next item will be the oldest item in the collection if it’s
backed by a ConcurrentQueue<T>, the newest if it’s backed by a ConcurrentStack<T>,
or any of the items if the backing collection is a ConcurrentBag<T>. If the collection is
empty, Take will block until another thread adds an item using Add or TryAdd. TryTake
(like TryAdd) is the same as Take with an added timeout. If the collection is empty,
and the timeout elapses before an item becomes available, TryTake will fail and return
false. If you pass zero as the timeout, TryTake will always return immediately.

The most common way to read data from a BlockingCollection<T> is to use foreach
with GetConsumingEnumerable, like we did in chapter 8, instead of calling Take or Try-
Take directly. GetConsumingEnumerable returns an IEnumerable<T> that, when used
with foreach, removes the current item at every iteration of the loop and, if the collec-
tion is empty, blocks until another thread adds an item to the collection. It is basically
equivalent to calling Take at the beginning of every loop iteration.

If we use GetConsumingEnumerable and foreach, we need a way to signal that there
are no new items and we can exit the loop. This is done with CompleteAdding. After
calling CompleteAdding, the foreach loop will continue to process all remaining items
in the collection and then exit. Calling Add or TryAdd after CompleteAdding will throw
an InvalidOperationException.

BlockingCollection<T> also has the static AddToAny, TryAddToAny, TakeFromAny,
and TryTakeFromAny methods. They work like their non-static counterparts except that
they accept an array of BlockingCollection<T> objects and use one of them based on
the number of items in each collection. They look like a good way to build a system with
multiple consumer threads where every thread has its own BlockingCollection<T>,
but they’re not.

AddToAny and TryAddToAny do not provide any load balancing. They’re optimized
to complete the AddToAny operation as quickly as possible, so they will always look for
the fastest option to add to a collection. In most cases, they will just add the item to the
first collection that is not at maximum capacity. So AddToAny and TryAddToAny will tend
to add items to the same BlockingCollection<T>. If you use them to build a multiple
processing threads system, then one thread will receive most of the work, and the rest of
the threads will be idle most of the time.

184 Chapter 13  Thread-safe collections

BlockingCollection<T> is very useful if you manage your own threads, but as its
name implies, it uses blocking operations and thus doesn’t fit the asynchronous pro-
gramming model.

13.2.3	 Async alternatives for BlockingCollection

As of .NET version 8, the .NET standard library does not have asynchronous collections
in general and does not have an asynchronous version of BlockingCollection<T>.
However, it does have several other classes that can be repurposed as an asynchronous
queue. One of those is Channel<T>, a thread-safe multiple-producers multiple-
consumers queue, designed for communication between software components.

The Channel<T> class represents a communication channel; each channel has a
writer that can add messages to the channel and a reader that can take messages from
the channel. The channel keeps the message ordering, which makes it equivalent to a
queue. Both the reader and the writer explicitly support concurrent access.

We can translate listing 13.11 to use Channel<T> instead of BlockingCollection<T>
and get the following.

Listing 13.12  Async background processing with Channel<T>

var ch = Channel.CreateUnbounded<int>();
Task[] tasks = new Task[10];
for(int i=0; i<10;++i)
{
 var threadNumber = i;
 tasks[i] = Task.Run(async () =>
 {
 var rng = new Random((int)threadNumber);
 int count = 0;
 while (true)
 {
 try
 {
 var currentValue = await ch.Reader.ReadAsync();
 Console.WriteLine($"task {threadNumber} value {currentValue}");
 Thread.Sleep(rng.Next(500));
 count++;
 }
 catch(ChannelClosedException)
 {
 break;
 }
 }
 Console.WriteLine($"task {threadNumber}, total {count} items");
 });
}
for (int i = 0; i < 100; i++)
{
 await ch.Writer.WriteAsync(i);
}
ch.Writer.Complete();
Task.WaitAll(tasks);

Starts 10 async tasks

Awaits next
data item

This exception means
no more data.

Adds 100 items to process

Signals no more data

Waits for all tasks
to complete

	 185The concurrent collections

Here we create a Channel<T> instead of a BlockingCollection<T>, and instead of cre-
ating a thread, we use Task.Run. The code we pass to Task.Run will start running on
a thread pool thread and then immediately use await to release the thread. We could
skip this step with some clever use of ContinueWith, but it would make the code more
complicated.

The biggest change from listing 13.11 is that instead of using foreach, we need to use
while(true), and we need to use an exception to detect when we should exit. We will
see what we can do about this in the next chapter.

13.2.4	 ConcurrentQueue<T> and ConcurrentStack<T>

ConcurrentQueue<T> is a thread-safe version of Queue<T>, and ConcurrentStack<T>
is a thread-safe version of Stack<T>. ConcurrentQueue<T> is a FIFO (first in, first out)
data structure, which means that when you read the next item, you always get the old-
est item in the queue. ConcurrentStack<T> is a LIFO (last in, first out) data structure,
which means the next item will always be the most recent one.

Both ConcurrentQueue<T> and ConcurrentStack<T> provide the same methods for
adding items as their non–thread-safe counterparts (Enqueue for ConcurrentQueue<T>
and Push for ConcurrentStack<T>), and both provide a way to get the next item (Try
Dequeue and TryPop, respectively). The interface is different from the non–thread-safe
version for the same reasons that we’ve seen when we’ve talked about Concurrent
Dictionary<TKey,TValue>. If we had a thread-safe version with the same interface as
Queue<T>, we would need to write code like this:

var queue = new Queue<int>();
//
if(queue.Count > 0)
{
 var next = queue.Dequeue();
 // use next
}

This code checks whether there are items in the queue and then dequeues the next
item; however, in multithread code, another thread can always dequeue the last item
between the time we checked and the time we dequeued. This means that even if we
had a thread-safe class with the same interface as Queue<T>, it would have been difficult
to use it to write thread-safe code. In contrast, with the ConcurrentQueue<T> interface,
we write code like this:

var queue = new ConcurrentQueue<int>();
//
if(queue.TryDequeue(out var next))
{
 // use next
}

Here the check and dequeue operations are combined into a single TryDequeue call,
which eliminates the time window between the check and the dequeue operation and
solves this problem.

Another thread can
dequeue the last item here.

Check and dequeue
are combined.

186 Chapter 13  Thread-safe collections

You can use ConcurrentQueue<T> and ConcurrentStack<T> directly if you
need a thread-safe queue or stack and don’t need a mechanism to signal when an
item is available for processing. However, they are most useful in conjunction with
BlockingCollection<T>.

13.2.5	 ConcurrentBag<T>

Unlike ConcurrentQueue<T> and ConcurrentStack<T>, ConcurrentBag<T> doesn’t
have a parallel outside of the concurrent collections. The ConcurrentBag<T> data
structure does not enforce item ordering. When you retrieve items from the bag, you
can get them in any order. ConcurrentBag<T> can store duplicate items. Concurrent-
Bag<T> has an Add method for adding items and a TryTake method for retrieving and
removing the items in the collection.

The implementation of ConcurrentBag<T> uses per-thread queues, and TryTake will
try to provide items inserted by the same thread. This is helpful because with per-thread
queues, the ConcurrentBag<T> doesn’t have to block if two threads try to retrieve an
item simultaneously. If an item added by the current thread isn’t available, TryTake will
get an item from another thread’s queue (this is called work stealing), which requires
thread synchronization and so is slower.

That is why you should only use ConcurrentBag<T> if the same thread (or set of
threads) both add and retrieve items from the bag. For example, you should only use
ConcurrentBag<T> as the backing collection for a BlockingCollection<T>-based
work queue if the code that handles items in the collection also adds them. Also, you
shouldn’t use ConcurrentBag<T> in asynchronous code because typically, you don’t
control which thread runs it.

13.2.6	 When to use the concurrent collections

ConcurrentDictionary<TKey,TValue> is a very good thread-safe alternative to
Dictionary<TKey,TValue>. We’ve already seen examples of using it as an in-process
cache. It can be used anytime we need to access a dictionary from multiple threads at
the same time. Also, it can be used in both asynchronous and non-asynchronous code.

Likewise, ConcurrentQueue<T> and ConcurrentStack<T> are good thread-safe
implementations of the queue and stack data structures. We can use them whenever we
need concurrent access to a queue or a stack, and we don’t need a built-in mechanism
to signal when items are available. They are also perfectly usable in both asynchronous
and non-asynchronous code.

If you do need this signal and want the consumer thread to block when there’s no
work available, then BlockingCollection<T> is a perfect fit. However, Blocking
Collection<T>, especially Take and GetConsumingEnumerable, does not fit the asyn-
chronous programming model.

13.2.7	 When not to use the concurrent collections

If we need to use a lock to make our own code thread safe (except for just protecting
access to the collection), then we use this lock to synchronize access to our code (and

	 187The immutable collections

the collection) and don’t need to use a collection that supports concurrent access. In
this case, the non–thread-safe alternatives (Dictionary<TKey,TValue>, Queue<T>, and
Stack<T>) are simpler and faster.

If you do need thread safety because you pass the collection to some (maybe exter-
nal) code that doesn’t need to modify the collection and can work if the collection
is a little bit stale (that is, not completely up to date), you should look into using the
immutable collections instead.

13.3	 The immutable collections
The problems of thread safety always boil down to multiple threads modifying the data
simultaneously, threads reading while other threads are modifying the data, or tim-
ing problems making threads modify data in the wrong order. All those problems are
about modifying data—if you never modify data, you won’t have any of those prob-
lems, and your code will be inherently thread safe.

While the concurrent collections use clever locking and lockless strategies to make
it safe to modify a collection by multiple threads simultaneously, the immutable collec-
tions achieve thread safety by simply being immutable. If they can’t be modified at all,
they can’t be modified by two threads at the same time.

The immutable collections work like the .NET String class. All the methods that
modify the collection actually leave the collection untouched and return a brand-new
collection that is a copy of the original collection with the requested modifications.

It might seem like all this copying is wasteful and can cause poor performance and
excessive memory usage problems, but the immutable collections mitigate this prob-
lem by using internal data structures that can share parts of the data between collec-
tions. Therefore, creating a modified copy of a collection is cheap (or, at least, cheaper
than copying the entire collection).

13.3.1	 How immutable collections work

If you look at the standard collections, you will find that they are all based on arrays.
The reason is that due to the way the CPU accesses memory, arrays are the most
performant data storage option. List<T> is just a wrapper around an array. Queue<T>
and Stack<T> are also arrays. HashSet<T> is a hash table implemented by using two
arrays, and Dictionary<TKey,TValue> is implemented using four arrays. Everything is
based on arrays. However, arrays are just contiguous blocks of memory; you can’t share
memory between arrays, which is why the immutable collections generally don’t use
them and instead opt for data structures that do support sharing parts of the memory
between collections.

Why arrays are more efficient than other data structures
The CPU is much faster than the computer’s memory. For example, for a 2GHz CPU, each
CPU clock cycle is 0.5 nano seconds, while access to DDR5 memory takes around 16.67
nano seconds, give or take. Applying a little bit of math shows us that a CPU can perform
about 33 internal operations in the time it takes it to retrieve anything from memory.

188 Chapter 13  Thread-safe collections

(continued)

Obviously, having the CPU on idle and waiting for data to arrive from memory most of
the time would be bad, so clever CPU designers devised a solution—just add a little bit of
memory into the CPU chip. This memory runs nearly as fast as the CPU processing cores
(the reason we can’t make all the computer’s memory this fast is cost). We call this mem-
ory the CPU cache memory. We also have a hardware component inside the CPU chip
that is called the cache controller. One of the things the cache controller does is try to
preload data from the main memory into the CPU cache before we need it.

Arrays are contiguous blocks of memory. All the items in the array are stored in memory
one after the other; when we iterate an array, we scan this memory sequentially. If you
scan memory sequentially, it’s easy for the cache controller to guess the next value you
are going to retrieve from memory—it’s the value immediately after your previous mem-
ory access.

Other data structures, such as linked lists and trees, are not contiguous in memory. To
get the memory address of the next item in a linked list, you must read the current item’s
node and extract the “next” field from it. Linked lists and trees do not have a standard
node layout, and the cache controller doesn’t know how to parse nodes of whatever data
structure from whichever library your program may be using.

That is why when you scan an array, the next value will most likely will be waiting for you
in the cache ready for immediate access; however, when you access another data struc-
ture, the CPU will spend a significant amount of time waiting for data to be transferred
from the computer’s main memory.

And a quick note for the readers that know about CPU design and are screaming at the
book about cache lines and clock cycles per operation: you are obviously right, but this is
not a book about hardware design, and the explanation here is correct enough to explain
the performance characteristics of arrays.

To understand the tricks used by immutable collections, we will implement an
immutable stack. But before we do so, we need a regular array-based stack to compare
it to.

We will implement the simplest thread-safe stack possible. Our stack will only have
two methods: a Push method that adds an item to the top of the stack and a TryPop
method that retrieves the item at the top of the stack or returns false if the stack is
empty. We will also limit our array-based stack to just 10 items because I want to focus on
how the immutable stack works and not on how to resize the array-based stack. We will
achieve thread safety by using a lock to protect all access to the stack.

Listing 13.13  Simple stack implementation

public class MyStack<T>
{
 private T?[] _data = new T[10];
 private int _top = -1;
 private object _lock = new();

	 189The immutable collections

 public void Push(T item)
 {
 lock(_lock)
 {
 if(_top == _data.Length-1) throw new Exception("Stack full");
 _top++;
 _data[_top] = item;
 }
 }
 public bool TryPop(out T? item)
 {
 if(_top==-1)
 {
 item = default(T);
 return false;
 }
 item = _data[_top];
 _data[_top] = default(T);
 _top--;
 return true;
 }
}

Now let’s see what happens when we run the following test code.

Listing 13.14  Test code for simple stack

var stack = new MyStack<int>();
stack.Push(1);
stack.Push(2);
stack.TryPop(out var item);

This code creates a stack and then pushes two values (one and two); it will then pop the
last value out.

Let’s see what happens inside the stack when we run the test code. When we create
the stack, _top is set to −1 in our constructor (virtually pointing to the nonexistent
item before the start of the array), and _data is initialized by the runtime to all zeros
(figure 13.2).

0 0 0 0 0 0 0 0 0 0_data

_top -1

Figure 13.2  Simple stack initial state

After the Push(1) call, we increment _top to zero, making it point at the current top of
the stack and store 1 into the new top (which is _data[0]; figure 13.3).

190 Chapter 13  Thread-safe collections

1 0 0 0 0 0 0 0 0 0_data

_top 0

Figure 13.3  Simple stack after first push

The Push(2) call will increment _top again to 1, indicating that _data[1] is now top of
the stack, and store 2 into the new top (figure 13.4).

1 2 0 0 0 0 0 0 0 0_data

_top 0

Figure 13.4  Simple stack after second push

The TryPop call will return the item at the current top of the stack (_data[1]) using
the item out parameter. It will also zero out the current top and decrement _top to
zero indicating the new top is _data[0], effectively returning the stack to the same
state as before the last push (figure 13.5).

1 0 0 0 0 0 0 0 0 0_data

_top 0

Figure 13.5  Simple stack after pop

Now that you understand how a standard stack works, let’s implement an immutable
stack. With an immutable stack, we no longer change the stack. Instead, each call will
return a new stack. We will have a Push method, a Pop method, and an IsEmpty prop-
erty. In the regular implementation, we had to combine Pop and IsEmpty into a single
TryPop method because we have no way to prevent another thread from modifying the
stack between the IsEmpty check and the Pop call. With the immutable stack, no one
can modify the stack at all, so no one can modify the stack between the IsEmpty check
and the Pop call. As the stack is immutable, Push and Pop will not modify the stack but
will return a new stack with an item added or removed.

If we keep using an array, we’ll have to copy the entire array on every Push and Pop,
and obviously, we don’t want that. Luckily, we can implement a stack using a singly
linked list.

	 191The immutable collections

Listing 13.15  Immutable stack implementation

public class MyImmutableStack<T>
{
 private record class StackItem(T Value, StackItem Next);
 private readonly StackItem? _top;
 public MyImmutableStack() {}
 private MyImmutableStack(StackItem? top)
 {
 _top = top;
 }
 public MyImmutableStack<T> Push(T item)
 {
 return new MyImmutableStack<T>(new StackItem(item,_top);
 }
 public MyImmutableStack<T> Pop(out T? item)
 {
 if(_top == null)
 throw new InvalidOperationException("Stack is empty");
 item = _top.Value;
 return new MyImmutableStack<T>(_top.Next);
 }
 public bool IsEmpty => _top == null;
}

Now we’ll run the equivalent code to listing 13.14 on this new immutable stack.

Listing 13.16  Test code for immutable stack

var stack1 = new MyImmutableStack<int> ();
var stack2 = stack1.Push(1);
var stack3 = stack2.Push(2);
var Stack4 = stack3.Pop(out var item);

This code creates a new empty stack and assigns it to the stack1 variable. Next, it calls
Push, which creates another stack with the new item and assigns it to the stack2 vari-
able. It then calls Push again, which also creates a new stack with an additional item
and stores it as stack3. Finally, it calls Pop, which creates yet another stack, but this
time with the top item removed, and puts it in the stack4 variable.

Let’s see what happens inside the immutable stack when we run the test code. The
MyImmutableStack parameterless constructor will create a new stack that has no Stack-
Item (_top will be null) (figure 13.6).

stack1 null

Figure 13.6  Immutable stack initial state

The Push(1) call will also create a new stack, which will have a single stack item with
Value set to 1 and Next set to the previous _top (null) (figure 13.7).

192 Chapter 13  Thread-safe collections

stack1 null

stack2 1 null
Figure 13.7  Immutable stack after first push

The Push(2) call will create a new stack and a new StackItem. The new StackItem will
have Value set to 2 and Next pointing to stack2’s _top, which is the existing StackItem
storing the value 1. Note that now two stacks are sharing this first StackItem (figure
13.8).

stack1 null

stack2

stack3

1 null

2
Figure 13.8  Immutable stack after second push

Finally, the Pop call will, unsurprisingly, create a new stack. The new stack will point
to _top.Next, that is, to the old StackItem with the value 1 that will now be shared
between the three stacks (figure 13.9).

stack1 null

stack2

stack3

stack4

1 null

2

Figure 13.9  Immutable stack after pop

Usually, we will reuse the same variable and not create a new variable for each ver-
sion of the stack (we’ll have just one variable instead of stack1, stack2, stack3, and
stack4); however, this does not change anything (except that, with the separate vari-
able names, the figures area is easier to understand). Even if we reuse the variables, all
the old stacks will still hang around in memory until the next time the garbage collec-
tor runs and frees them.

Now you can see how every operation on the immutable stack creates a new stack
with a negligible amount of work and without copying any of the items already in the
stack. This is at the cost of using a little bit more memory (each item now has the Next
reference and all the overhead of an object) and having the items spread around in
memory instead of being stored sequentially in an array (which, because of CPU cache
design, slows down the access to them).

I’ve chosen to demonstrate how the immutable stack works because this is the sim-
plest of the immutable collections; however, they all use the same basic tactic—place

	 193The immutable collections

the data inside node objects and design your operation so that every “modified” copy
can share most of the previous collection’s nodes. As we’ve seen, a stack can be imple-
mented with just one linked list. A queue needs two linked lists, and most of the other
immutable collections use some kind of binary tree. The implementation details of all
the immutable collections are outside the scope of this book.

13.3.2	 How to use the immutable collections

Some data changes so rarely that storing it in a data structure that cannot change
doesn’t pose problems. For example, the list of countries in the world does change
sometimes, but it’s rare enough that we can accept having to restart our service to
refresh this list. However, the data that’s really critical for our software, that data that
we manage, tends to change all the time.

Let’s say we are building an e-commerce site that sells books. Obviously, the sur-
vival of the company depends on selling a lot of books, so we really want to be able
to sell more than one book simultaneously. For this reason, we’ve decided to use the
immutable collection to store our inventory due to the inherent thread safety. Let’s
write some code to manage our inventory.

Listing 13.17  Non–thread-safe stack management with ImmutableDictionary

public class InventoryManager
{
 private ImmutableDictionary<string,int> _bookIdToQuantity;

 public bool TryToBuyBook(string bookId)
 {
 if(!_bookIdToQuantity.TryGetValue(bookId, out var copiesInStock))
 return false;
 if(copiesInStock == 0)
 return false;
 _bookIdToQuantity =
 _bookIdToQuantity.SetItem(bookId, copiesInStock-1);
 return true;
 }
}

We wrote the InventoryManager class with a single method called TryToBuyBook. This
method first retrieves the number of copies we have in stock from an Immutable
Dictionary<string,int> that’s referenced by the _bookIdToQuantity variable. If the
book doesn’t exist in the shop, or there are no copies in stock, the method returns
false to indicate the customer can’t buy the book. If everything is okay, the method
updates the stock by using the dictionary’s SetItem to create a new dictionary with the
updated number of copies and stores the new dictionary in the same variable. It then
returns true.

If you think about what happens when this code runs on multiple threads simulta-
neously, it’s easy to see the problem: the dictionary can’t change, it’s immutable, and
it’s impossible for another thread to modify the dictionary. However, if that dictionary

Gets previous
quantity

Sets new
quantity

194 Chapter 13  Thread-safe collections

is referenced by a normal mutable variable, another thread can change the variable
swapping the dictionary with another one, and that change is not protected by the
immutable data structure. See figure 13.10.

Concurrent collections Immutable collections

ConcurrentDictionary _dict; ImmutableDictionary _dict;

The _dict
variable

The ConcurrentDictionary The ImmutableDictionaryThe _dict
variable

Never changes
(always

references the
same dictionary);
does not require
synchronization

Can change, but handles
synchronization internally

Can change.
You need to handle

thread safety yourself.

Never changes;
does not require
synchronization

Figure 13.10  Synchronization needs of immutable collections versus concurrent collections

The simplest solution is to place a lock around the entire method. This solves our data
corruption problem, but it completely nullifies any benefits we get from the immutable
collection’s thread safety. If we place a lock around any access to the dictionary, we
might as well use the simpler non–thread-safe Dictionary<TKey,TValue>.

The complicated solution is to use ImmutableInterlocked.

13.3.3	 ImmutableInterlocked

The ImmutableInterlocked class gives us lock-free operations for modifying a variable
referencing an immutable collection. It contains methods that implement the same
operation we’ve seen in the concurrent collection, but this time for the immutable
collection.

For example, for ImmutableDictionary<TKey,TValue>, ImmutableInterlocked
gives us AddOrUpdate, GetOrAdd, TryAdd, TryRemove, and TryUpdate, which are similar
to the ConcurrentDictionary<TKey,TValue> methods with the same name.

If you remember from listing 13.10, ConcurrentDictionary<TKey,TValue>.Try
Update ensures that the value we are trying to update hasn’t been changed by someone
else. Then, if the value hasn’t been changed, it will replace that value in the dictionary.
ImmutableInterlocked.TryUpdate does the same for immutable dictionaries; it will
make sure that the value we are trying to update hasn’t been changed by someone else.
Then, if the value hasn’t changed, it will replace the entire dictionary with a new dictio-
nary with one different value.

	 195The immutable collections

Just like ConcurrentDictionary<TKey,TValue>.TryUpdate, it will return false with-
out changing anything if the value was changed by another thread, and we need to deal
with it, typically by reading the new value and redoing our processing until we succeed.

Listing 13.18  Thread-safe stock management with ImmutableInterlocked

 private ImmutalbeDictionery<string,int> _bookIdToQuantity = new();
 public bool TryToBuyBook(string bookId)
 {
 while(true)
 {
 if(!_bookIdToQuantity.TryGetValue(bookId,
 out var copiesInStock))
 Return false;
 if(copiesInStock == 0)
 return false;
 if(ImmutableInterlocked.TryUpdate(
 ref _bookIdToQuantity, bookId,
 copiesInStock-1, copiesInStock))
 return true;
 }
 }
}

This is the safe version of listing 13.17. It reads the number of copies in stock and tries
to decrease it by 1, and if the number of copies has already changed since we’ve read
it, this code will read the value again, validate that it has a copy to sell again, and try
to decrease the value in the _bookIdToQuantity dictionary. It will continue doing this
either until it succeeds or until transactions running on other threads cause the num-
ber of copies in stock to go down to zero.

ImmutableInterlocked also provides Push and TryPop methods for use with
ImmutableStack<T>, and Enqueue and TryDequeue for ImmutableQueue<T>. Note
that using ImmutableInterlocked is an all-or-nothing deal—it’s only safe if all
your modifications use ImmutableInterlocked. Also note that you cannot use
ImmutableInterlocked to update multiple collections in a thread-safe way. If, for
example, you need to add the same key to two dictionaries, there is no way to do it
with ImmutableInterlocked without having a time window where another thread can
view the change in the first dictionary before you updated the second. This also goes
for multiple changes in the same dictionary—you can’t use ImmutableInterlocked to
change two values at once.

13.3.4	 ImmutableDictionary<TKey,TValue>

ImmutableDictionary<TKey,TValue> is, predictably, the immutable version of
Dictionary<TKey,TValue>. ImmutableDictionary<TKey,TValue>, just like Dictionary
<TKey,TValue>, lets us check whether a key exists by using ContainsKey, retrieve a
value by using the [] operator, and do both in a single call by using TryGetValue.

Gets previous quantity

Sets new quantity only
if it didn’t change

On success, returns

If changed, repeats loop

196 Chapter 13  Thread-safe collections

It also has most of the methods used in Dictionary<TKey,TValue> to modify the
dictionary (Add, Remove, and so on), but in ImmutableDictionary<TKey,TValue>, they
leave the dictionary untouched and return a new dictionary with the modifications. To
change a specific value inside the dictionary, you use the UpdateValue method instead
of the [] operator because there’s no good way for the [] operator to return a new
dictionary.

The ImmutableDictionary<TKey,TValue> does not itself have any of the special
operations found in ConcurrentDictionary<TKey,TValue>, such as GetOrAdd, because
since the ImmutableDictionary<TKey,TValue> is immutable, it can’t change between
the Get and the Add.

If you need to add, remove, or update multiple values simultaneously, Immutable
Dictionary<TKey,TValue> provides the AddRange, RemoveRange, and UpdateItems
methods. These methods are important for writing high-performance code because
they create just one new ImmutableDictionary<TKey,TValue> for the entire method
call instead of one new dictionary for each and every value changed.

If you need to make multiple modifications of different types (for example, adding
a value and removing another), or your algorithm doesn’t let you easily group changes
(for example, if you can’t replace several Add calls with one AddRange call), you can use
a builder object. A builder object is created using the dictionary’s ToBuilder method.
The builder is not immutable, and you can use it to make multiple modifications with-
out creating a new dictionary. When you’ve finished with the modifications, you call
the builder’s ToImmutable method that created one new ImmutableDictionary<TKey,
TValue> with all the modifications.

The builder is not immutable and not thread safe. It is a fast and efficient way to cre-
ate new ImmutableDictionary<TKey,TValue> objects, but it does not do anything to
help with multithreading.

As we’ve seen earlier in this chapter, the variable holding the up-to-date version of
the dictionary is just a simple variable and has the same threading behavior as any other
variable (not thread-safe without locking if there are any write operations). As we’ve
also seen earlier in this chapter, if you want a fast, lock-free way to synchronize access
to that variable, you can use ImmutableInterlocked. It provides the AddOrUpdate,
GetOrAdd, TryAdd, TryRemove, and TryUpdate methods, which work the same way as
the ConcurrentDictionary<TKey,TValue> methods with the same name (except
that, being immutable, the dictionary never changes, and those operation swap the
dictionary with a new dictionary that has the requested modifications).

If you use ImmutableInterlocked with ImmutableDictionary<TKey,TValue>, it’s
likely you are doing it to get basically the same behavior that you get with Concurrent-
Dictionary<TKey,TValue>. If this is the case, you will probably be better off just using
ConcurrentDictionary<TKey,TValue> instead.

Remember that you can either use ImmutableDictionary<TKey,TValue>’s methods
(and the builder) to create modified copies, or you can use ImmutableInterlocked.
Using both is not thread safe.

	 197The immutable collections

13.3.5	 ImmutableHashSet<T> and ImmutableSortedSet<T>

Naturally, ImmutableHashSet<T> and ImmutableSortedSet<T> are the immutable ver-
sions of HashSet<T> and SortedSet<T>. They both represent a set from set theory—
they contain zero or more items with no duplicates and can also perform set theory
operations (Except, Intersect, IsSubsetOf, IsSupersetOf, and so forth).

When you enumerate an ImmutableHashSet<T> (for example, by using foreach),
the items’ order is completely arbitrary and is not under your control, but operations
on the set, especially lookup, are very fast. In contrast, if you enumerate an Immutable-
SortedSet<T>, you get the item in sorted order (you can control the sort order by
passing an IComparer<T> to the static ImmutableSortedSet.Create<T> method), but
operation on the set will be slower. Because of the performance difference, it’s recom-
mended to prefer ImmutableHashSet<T> and only use ImmutableSortedSet<T> if you
care about the items’ order during enumeration.

As with all the immutable collections, all the methods that would normally change
the collection return a new collection with the modifications instead. Also, like we’ve
seen with ImmutableDictionary<TKey,TValue>, both ImmutableHashSet<T> and
ImmutableSortedSet<T> have a ToBuilder method that returns an object you can use
to efficiently perform many modifications and then create only one new immutable set
for all the modifications. Remember, the builder object is not thread safe.

In addition, as with all of the immutable collections, if you have a variable referenc-
ing the up-to-date version of the collection, you need to synchronize access to the vari-
able yourself (most likely, using locks). Unlike ImmutableDictionary<TKey,TValue>,
you can’t use ImmutableInterlocked with the immutable set classes.

13.3.6	 ImmutableList<T>

ImmutableList<T> is, unsurprisingly, the immutable version of List<T> and, also
unsurprisingly, works the same way as the previous immutable collections. All the
methods that don’t modify the list work exactly like in List<T>. All the methods that
do modify the list return a new ImmutableList<T> instead. To set an item at a specific
location, use the SetItem method instead of the [] operator because the operator has
no good way to return a new ImmutableList<T> object.

Like all the previous immutable collections, ImmutableList<T> has a ToBuilder
method that returns a mutable object you can use to perform multiple modifications
without creating an excessive number of ImmutableList<T> objects. As always, the
builder object is not thread safe.

If you have a variable holding an ImmutableList<T> object that is accessed by dif-
ferent threads, you need to synchronize access to this variable. ImmutableInterlocked
does not support ImmutableList<T>.

13.3.7	 ImmutableQueue<T> and ImmutableStack<T>

ImmutableQueue<T> and ImmutableStack<T> are, obviously, the immutable versions of
Queue<T> and Stack<T>. Because queue and stack are almost always used as temporary

198 Chapter 13  Thread-safe collections

storage, with items added and removed all the time, in almost all cases, Concurrent-
Queue<T> and ConcurrentStack<T> are a better choice, with the notable exception of
functional programming.

If you do use the immutable queue and stack, then the ImmutableQueue<T>.IsEmpty
and ImmutableStack<T>.IsEmpty properties will tell you the collection is empty, and
ImmutableQueue<T>.Enqueue and ImmutableStack<T>.Push will create a new queue
or stack with the added item. ImmutableQueue<T>.Peek and ImmutableStack<T>.Peek
will both return the next item without removing it from the collection, and Immutable
Queue<T>.Dequeue and ImmutableStack<T>.Pop will return a new stack with an item
removed and (optionally) will place the removed item in an out parameter.

The Peek, Dequeue, and Pop methods will throw an exception if the queue or stack
is empty. There’s no way for another thread to modify the collection between checking
the IsEmpty property and calling Peek, Dequeue, or Pop—the collection is immutable, it
can’t be modified at all, and thus it can’t be modified by another thread.

If your queue or thread is referenced by a variable that is writable by other threads,
you need to synchronize access to this variable and, at the minimum, copy the reference
to a local variable before reading IsEmpty so another thread can’t replace the queue or
stack between you reading IsEmpty and calling Peek, Dequeue, or Pop.

ImmutableInterlocked supports both ImmutableQueue<T> and ImmutableStack<T>
with operations similar to those available in ConcurrentQueue<T> and Concurrent-
Stack<T>. However, if you need them, it’s almost guaranteed you’ll be better off just
using ConcurrentQueue<T> or ConcurrentStack<T> instead.

13.3.8	 ImmutableArray<T>

When I started talking about the immutable collections, I said all the non–thread-safe
collections use arrays because they are fast, but immutable collections don’t use arrays
because this would have required them to copy all the data every time a collection
is modified (that is, a new collection is created with the modification). Immutable
Array<T> is an exception that, like the name suggests, does use an array.

Because ImmutableArray<T> is not exempt from the disadvantages of arrays, this
means that the immutable array does have to copy all the data every time it creates a
modified collection, and this makes ImmutableArray<T> the slowest immutable collec-
tion to write to. However, because it uses an array, it is also the fastest immutable collec-
tion to read from. This makes ImmutableArray<T> more similar to frozen collections
(described later in this chapter) compared to other immutable collections.

ImmutableArray<T> is a very good choice if you need to pass a read-only array to
some code that isn’t under your control. Being an array, it’s fast to scan and even sup-
ports read-only memory and span objects.

Conversely, ImmutableArray<T> is typically not a good choice for your internal data
structure because modifications are slow and require a lot of memory. This can still be
acceptable if modifications are very rare or the array is small, but you need to be very
careful about it.

	 199The frozen collections

You can use ImmutableArray.Create<T> to create a new immutable array from a
normal array or from up to four individual data items. You can use ImmutableArray
.ToImmutable<T> to create an immutable array from any collection, and you can use
ImmutableArray.CreateRange to create an immutable array from a subset of another
collection.

As always, if the variable referencing the immutable array is accessible from multi-
ple threads, you need to synchronize access yourself. ImmutableInterlocked supports
ImmutableArray<T> with the InterlockedCompereExchange, InterlockedExchange,
and InterlockedInitilize methods, but you generally shouldn’t use them. They are
complicated and error prone compared to a lock statement, and unless you are in a
very performance-critical code path, the trade-offs are just not worth it.

Generally, ImmutableArray<T> should be used like the frozen collections (which
we’ll discuss in just a few paragraphs). ImmutableArray<T> is inefficient to create (both
in speed and memory usage) but very efficient to use. It should be used when we need a
sequential collection (like List<T> or an array) that is read only and inherently thread
safe. However, because recreating it is expensive, it should only be used when we do not
intend to change it (that is, create a new modified copy) at all.

13.3.9	 When to use the immutable collections

Immutable collections are very common in functional programming. If you write code
in functional style or use functional algorithms, the immutable collections are perfect
for you.

Immutable collections are also convenient if you need to preserve previous states of
the system, for example, as a way to provide undo functionality. Note that immutable
collections are irrelevant if you need to preserve the state of the system for auditing or
regulatory purposes because then you need to preserve the state of the system on disk,
and the immutable collections are only in-memory.

Immutable collections are also very helpful if you need to pass the collection to code
that is not under your control. That way, you don’t have to defensively duplicate the
data and send a copy to the outside code.

But whenever you use the immutable collections, you must remember that while the
immutable collections themselves are completely thread safe, “changing the collection”
involves creating a new collection, and the collection is usually assigned to the same
variable as the previous collection. This variable is now modified with every change,
and access to it needs to be synchronized like any other variable that is concurrently
accessed from multiple threads. This often requires holding a lock when updating the
collection or using ImmutableInterlocked, and in those cases, the code is likely to be
simpler and faster if you use the concurrent collections instead.

Finally, in cases where the data really never changes, you should consider using the
frozen collections.

13.4	 The frozen collections
We’ve seen that the immutable collections never change in the sense that if you
want to change them, you need to create a copy of the collection with the required

200 Chapter 13  Thread-safe collections

modification, and we’ve also seen that as a trade-off, the immutable collection uses
less-efficient data structures to make the creation of modified copies faster. But what if
we don’t want to make this trade-off? What if the data really never changes? What if we
don’t want to sacrifice read performance to support write operations we don’t need?
This is why we have the frozen collections.

Frozen collections are read-only collections optimized for reading. Creating them is
slower than creating regular, concurrent, or immutable collections, but reading from
them is as fast as possible.

Frozen collections are meant only for reading. They can’t be modified at all, and
they don’t even have methods to create modified copies like the immutable collections.

Currently, there are only two types of frozen collections—FrozenDictionary

<TKey,TValue> and FrozenSet<T>—which are read-only versions of Dictionary
<TKey,TValue> and HashSet<T>, respectively. If you want a frozen version of List<T>,
you can use ImmutableArray<T> (we talked about it earlier in this chapter). There are
no frozen queues and stacks because those don’t make sense.

To create a FrozenSet<T>, you can take any collection and call the ToFrozenSet
extension method.

13.19  Initializing a FrozenSet

var data = new List<int> {1,2,3,4};
var set = data.ToFrozenSet();

This code creates a List<int> with some numbers and then calls ToFrozenSet on it to
create a FrozenSet<int> with the same content.

To create a FrozenDictionary<TKey,TValue>, you can take any collection and
call the ToFrozenDictionary extension method. The easiest way to create a Frozen
Dictionary<TKey,TValue> is by using a Dictionary<TKey,TValue>.

13.20  Initializing a FrozenDictionary from a Dictionary

var numberNames = new Dictionary<int,string>
{
 {1, "one"},
 {2, "two"}
};
var frozenDict = numberNames.ToFrozenDictionary();

This code creates a Dictionary<int,string> that maps numbers to the English name
of the numbers (only for one and two, just to keep the code short) and then uses
ToFrozenDictionary to create a FrozenDictionary<int,string> with the same con-
tent. There’s also an overload of ToFrozenDictionary that accepts delegates to extract
the key and value so it can be used on any collection.

	 201Summary

13.21  Initializing a FrozenDictionary from a List

var data = new List<int> {1,2,3,4};
var frozenDict = data.ToFrozenDictionary(x=>x,x=>x.ToString());

This code creates a List<int> with some numbers and then uses ToFrozenDictionary
to create a FrozenDictionary<int,string>, which maps the numbers in the list to
their string representation. Note that if the source data contains duplicates (in the
case of ToFrozenSet) or duplicate keys (in the case of ToFrozenDictionary), the latest
entry will be used, which is different than the behavior of Dictionary<TKey,TValue>
and HashSet<T> that throws an exception in case of duplicate keys.

13.4.1	 When to use the frozen collections

The frozen collection should only be used when data (almost) never changes. The frozen
collections optimize for reads at the cost of making the collection creation much slower.
If the data is frequently accessed but never modified, this can improve performance. In
contrast, if the data changes frequently, the time it takes to create the frozen collection
after each change can easily be much more than the time saved due to the faster lookups.

Summary

¡	It is possible to read from the regular collections in the System.Collections
.Generic namespace from multiple threads simultaneously.

¡	Writing from multiple threads simultaneously or writing from one thread while
reading from others is not allowed and might cause the collections to return
incorrect results and even corrupt them.

¡	The concurrent collections in the System.Collections.Concurrent namespace
are fully thread safe and support both reading and writing from multiple threads
at the same time.

¡	There are concurrent versions of Dictionary<TKey,TValue>, Queue<T>, and
Stack<T> called ConcurrentDictionary<TKey,TValue>, ConcurrentQueue<T>,
and ConcurrentStack<T>. Their interface is different from the regular collec-
tions—it combines operations that are commonly used together into a single
operation to avoid race conditions.

¡	There is also a ConcurrentBag<T> collection that is useful when you don’t care
about the items’ order; it is designed to be used when the same threads both read
and write from/to the collection.

¡	The BlockingCollection<T> class adds support for producer–consumer sce-
narios and for limiting the collection’s size. BlockingCollection<T> works as a
queue by default but can also be used as a stack.

¡	The ConcurrentDictionary<TKey,TValue>, ConcurrentQueue<T>, Concurrent-
Stack<T>, and ConcurrentBag<T> collections can be used with asynchronous
code.

202 Chapter 13  Thread-safe collections

¡	Like the name suggests, the BlockingCollection<T> class is blocking, and it
should be used carefully (or not at all) with asynchronous code.

¡	There is no asynchronous version of BlockingCollection<T>, but we can use
Channel<T> to make an asynchronous version of its most common use case
(more about this in the next chapter).

¡	The immutable collections in the System.Collections.Immutable name-
space are collections that can’t be changed (every change leaves the collection
untouched and creates a new collection). They are thread safe because, since
they can’t be modified at all, by definition, they can’t be modified by another
thread while you are accessing them.

¡	However, if the variable that references the collections is accessed by multiple
threads, you need to synchronize access yourself. The ImmutableInterlocked
class can help with that (for dictionary, queue, and stack).

¡	If you need to make multiple modifications to an immutable collection, you can
call ToBuilder to get a builder object that collects the modifications without cre-
ating new collections. After you make all the modifications to the builder, you call
its ToImmutable method to create just one new collection with all the changes.
The builder object is not thread safe.

¡	There are ImmutableDictionary<TKey,TValue>, ImmutableHashSet<T>,
ImmutableSortedSet<T>, ImmutableQueue<T>, ImmutableStack<T>, and
ImmutableList<T> classes that are immutable versions of classes with the same
name but without the Immutable prefix.

¡	Those collections are slower to read than the regular or concurrent collections,
but making copies of them is fast, which is important because every time you
need to modify the collection, you create a copy of it.

¡	 The ImmutableArray<T> collection is an immutable array. It is faster to access
than the other immutable collections but slower to modify (that is, create a mod-
ified copy). It also supports read-only Span<T> and Memory<T>.

¡	The frozen collections are optimized for reading. Creating them is slow, but
reading from them is fast. They cannot be modified.

¡	Like the immutable collections, the frozen collections are inherently thread safe.

¡	There are only two frozen collections: FrozenDictionary<TKey,TValue> and
FrozenSet<T>.

¡	Typically, to create a frozen collection, you first use a regular collection and then
ToFrozenSet or ToFrozenDictionary to create a frozen collection from the data
they contain.

203

14Generating collections
asynchronously/await foreach

and IAsyncEnumerable

This chapter covers:

¡	How await foreach works
¡	Using yield return in async methods
¡	Iterating over asynchronous data using 		
	 IAsyncEnumerable<T> and await foreach

Sometimes, we may want to use foreach to iterate over a sequence of items we gen-
erate on the fly or retrieve from an external source without first adding the entire
set of items to a collection. For example, we’ve seen in chapters 8 and 13 how
BlockingCollection<T>’s support for foreach makes it easy to use for building
a work queue. C# makes this easy with the yield return keyword, as discussed in
chapter 2. However, both the versions of yield return we covered in chapter 2 and
BlockingCollection<T> don’t support asynchronous programming.
In this chapter, we’ll cover the asynchronous version of foreach (called await
foreach) and the yield return enhancement from C# 8, which allows us to use it
for asynchronous code. And finally, we’ll employ all of those to write an asynchro-
nous version of BlockingCollection<T> and a fully asynchronous work queue.

204 Chapter 14  Generating collections asynchronously/await foreach and IAsyncEnumerable

14.1	 Iterating over an asynchronous collection
To understand how the asynchronous await foreach works, we need to first take a
look at the good old non-asynchronous foreach. The foreach keyword is syntactic
sugar. It’s just a nicer way to write code relative to using more basic language features.
Specifically, foreach is just a nicer way to write a while loop. You can think of the com-
piler’s implementation of foreach as a simple text replacement. The compiler takes
code like

foreach(var x in collection)
{
 Console.WriteLine(x);
}

and transforms it into

using(var enumerator = collection.GetEnumerator())
{
 while(enumerator.MoveNext())
 {
 var x = enumerator.Current;
 Console.WriteLine(x);
 }
}

As you can see, foreach translates into a call to GetEnumerator that retrieves an
IEnumerator<T> and a while loop that uses MoveNext to get the next item for each
iteration of the loop. More generally, you can say the compiler takes code in the form of

foreach([loop-variable-type] [loop-variable] in [collection])
{
 [loop-body]
}

and translates it to

using(var enumerator = [collection].GetEnumerator())
{
 while(enumerator.MoveNext())
 {
 [loop-variable-type] [loop-variable] = enumerator.Current;
 [loop-body];
 }
}

Obviously, I’m skipping a lot of details here; there are a lot of special cases and optimi-
zations that the compiler can use to improve this code, but functionally, the foreach
loop is equivalent to this while loop.

This works very well for non-asynchronous code, but to use a collection where items
are retrieved asynchronously, that is, a collection where getting the next item is an

	 205Iterating over an asynchronous collection

asynchronous operation, we’re going to have to make some changes to the way foreach
works. Specifically, we’re going to need to add an await inside the while loop condition
(third line in the previous code snippet), and to make that await possible, we need
MoveNext to return a Task<bool> instead of a bool.

And that’s what the await foreach keyword and the IAsyncEnumerable<T> inter
face are. The IAsyncEnumerable<T> interface is similar to IEnumerable<T>. It has
just one method called GetAsyncEnumerator (like IEnumerable<T>.GetEnumerator)
that returns an object implementing the IAsyncEnumerator<T> interface (like
IEnumerator<T>). That method itself is not asynchronous and should return quickly.
Any lengthy asynchronous initialization should happen the first time the enumerator’s
MoveNextAsync method is called. The IAsyncEnumerator<T> interface has a method
named MoveNextAsync that acts like the IEnumerator<T>.MoveNext method, except it
returns a ValueTask<bool> instead of a bool.

Here is the comparison between the IEnumerable<T> and IAsyncEnumerable<T>
(table 14.1) and IEnumerator and IAsyncEnumerator (table 14.2).

Table 14.1  IEnumerable vs. IAsyncEnumerable

IEnumerable<T> IAsyncEnumerable<T>

IEnumerator<T> GetEnumerator() IAsyncEnumerator<T>
➥ GetAsyncEnumerator()

Table 14.2  IEnumerator vs. IAsyncEnumerator

IEnumerator<T> IAsyncEnumerator<T>

T Current {get;} T Current {get;}

bool MoveNext() ValueTask<bool> MoveNextAsync()

void Dispose() ValueTask DisposeAsync()

As you can see from the tables, the asynchronous and non-asynchronous interfaces are
almost exactly the same, just with support for async/await. The tables do not contain
IEnumerable<T>’s support for the older nongeneric IEnumerable interface because
it’s practically never used. Also, I’ve ignored IAsyncEnumerator<T>.GetAsync
Enumerator‘s cancellation token parameter because we’ll talk about it in detail later in
this chapter.

The last piece of the puzzle is the awkwardly named await foreach loop, which is
just like foreach, except it uses IAsyncEnumerable<T> instead of IEnumerable<T> and
adds the required await to make everything work. So this loop

await foreach(var x in collection)
{
 Console.WriteLine(x);
}

206 Chapter 14  Generating collections asynchronously/await foreach and IAsyncEnumerable

translates into

await using(var enumerator = collection.GetAsyncEnumerator())
{
 while(await enumerator.MoveNext())
 {
 var x = enumerator.Current;
 Console.WriteLine(x);
 }
}

14.2	 Generating an asynchronous collection
Now we know how to use an asynchronous collection, but asynchronous collections
don’t actually exist, at least not out of the box. All the collections included in the .NET
library are data structures that hold items in memory, and with the items ready in mem-
ory, there is no need to retrieve them (asynchronously or otherwise).

When we talk about support for asynchronous collections, what we really want is
the ability to use an await foreach loop to process a sequence of data items that are
asynchronously generated or retrieved: we want an asynchronous version of the yield
return keyword we’ve talked about in chapter 2. In chapter 2, we also used the follow-
ing code to dynamically generate values 1 and 2.

Listing 14.1  yield return example from chapter 2

private IEnumerable<int> YieldDemo()
{
 yield return 1;
 yield return 2;
}

public void UseYieldDemo()
{
 foreach(var current in YieldDemo())
 {
 Console.WriteLine($"Got {current}");
 }
}

Now let’s add an asynchronous call to the method generating the values. We’ll use
Task.Delay for simplicity.

Listing 14.2  Async yield return example

private async IAsyncEnumerable<int> AsyncYieldDemo()
{
 yield return 1;
 await Task.Delay(1000);
 yield return 2;
}

Adds an await here

Changes IEnumerable<int> to
async IAsyncEnumerable<int>

We can use await.

	 207Generating an asynchronous collection

public async Task UseAsyncYieldDemo()
{
 await foreach(var current in AsyncYieldDemo())
 {
 Console.WriteLine($"Got {current}");
 }
}

We had to change the generator method to return IAsyncEnumerable<int> instead of
IEnumerable<int> and mark it as async—and that’s it. We can now use await inside of
it and the await foreach keyword we talked about earlier to iterate over the generated
sequence.

As we’ve seen in chapter 2, for the non-async yield return, when we compile this,
the compiler will transform the AsyncYieldDemo method into classes that implement
IAsyncEnumerable<int> and IAsyncEnumerator<int>. If we use the same transforma-
tions from chapter 2, we get the following listing.

Listing 14.3  Code generated by the compiler from listing 14.2

public class AsyncYieldDemo_Enumerable : IAsyncEnumerable<int>
{
 public IAsyncEnumerator<int> GetAsyncEnumerator(CancellationToken _)
 {
 return new YieldDemo_Enumerator();
 }
}

public class YieldDemo_Enumerator : IAsyncEnumerator<int>
{
 public int Current { get; private set; }

 private async Task Step0()
 {
 Current = 1;
 }
 private async Task Step1()
 {
 await Task.Delay(1000);
 Current = 2;
 }

 private int _step = 0;
 public async ValueTask<bool> MoveNextAsync()
 {
 switch(_step)
 {
 case 0:
 await Step0();
 ++_step;
 break;
 case 1:
 await Step1();

Changes foreach
to await foreach

208 Chapter 14  Generating collections asynchronously/await foreach and IAsyncEnumerable

 ++_step;
 break;
 case 2:
 return false;
 }
 return true;
 }
 public ValueTask DisposeAsync() => ValueTask.CompletedTask;
}

public IAsyncEnumerable<int> AsyncYieldDemo()
{
 return new AsyncYieldDemo_Enumerable();
}

This is exactly the same transformation we’ve seen in chapter 2 (except for the added
async, await, and the occasional Task where needed; changes are in bold). You can go
back to listing 2.5 for a complete breakdown of this code. The short version is

¡	The compiler breaks the method into chunks whenever it finds a yield return.
Each yield return ends a chunk.

¡	The yield return keyword is changed to Current =.

¡	The compiler generates the MoveNextAsync method that calls the first chunk the
first time it’s called, the second chunk the second time it’s called, and so forth.

We’ve used await extensively in this code, but as we’ve seen in chapter 3, await (like
yield return) is implemented by the compiler rewriting your code into a class. Let’s
see how the compiler generates code for the async methods in listing 14.3. We’ll start
with the Step0 method:

 private Task Step0()
 {
 Current = 1;
 return Task.CompletedTask;
 }

That was easy because Step0 doesn’t do anything asynchronous, the compiler doesn’t
need to change it, and we just drop the async keyword and return Task.Completed-
Task explicitly. Now let’s look at Step1:

 private TaskCompletionSource _step1tcs = new();
 private Task Step1()
 {
 Task.Delay(1000).ContinueWith(Step1Part2);
 return _step1tcs.Task;
 }
 private void Step1Part2(Task task)
 {
 Current = 2;
 _step1tcs.SetResult();
 }

	 209Canceling an asynchronous collection

Unlike Step0, Step1 really performs an asynchronous operation, namely Task.Delay,
so as we’ve seen in chapter 3, everything after the await is moved into a different
method that is passed to ContinueWith. The Step1 method needs to return a Task, so
we used the TaskCompletionSource class we talked about in chapter 10 to create this
Task. To keep the code simple, I’ve ignored all error handling. The compiler translates
the MoveNextAsync method in the same way.

14.3	 Canceling an asynchronous collection
Asynchronous operations often support cancellation, and we obviously want to be able
to support cancellation in operations called from await foreach loops. To support
cancellation, the GetAsyncEnumerator method accepts a cancellation token as an
optional parameter, but this by itself doesn’t solve our problem because

¡	The code calling GetAsyncEnumerator is generated by the compiler when we use
await foreach, and we have no obvious way to pass a cancellation token.

¡	The GetAsyncEnumerator code is also generated by the compiler, and we have no
obvious way to access the method’s parameter.

The first problem is solved by the WithCancellation extension method. This method
can be called on any IAsyncEnumerable<T>, and it returns a new object that also imple-
ments the IAsyncEnumerable<T> interface. This new object’s GetAsyncEnumerator
method simply calls the original object’s GetAsyncEnumerator with a cancellation
token you provide. To use WithCancellation, you just call it and use the returned
object. The simplest way to use it is directly in the await foreach clause:

await foreach(var item in collection.WithCancellation(token))

The WithCancellation method is pretty simple. If you want to implement it yourself,
all you need to do is write a class as shown in the following listing.

Listing 14.4  WithCancellation implementation

public class WithCancellation<T> : IAsyncEnumerable<T>
{
 private IAsyncEnumerable<T> _originalEnumerable;
 private CancellationToken _cancellationToken;

 public WithCancellation(
 IAsyncEnumerable<T> originalEnumerable,
 CancellationToken cancellationToken)
 {
 _originalEnumerable = originalEnumerable;
 _cancellationToken = cancellationToken;
 }

 public IAsyncEnumerator<T> GetAsyncEnumerator(
 CancellationToken dontcare)
 {

Fields for original enumerable
and cancellation token

Constructs to store original
enumerable and cancellation token

210 Chapter 14  Generating collections asynchronously/await foreach and IAsyncEnumerable

 return _originalEnumerable.
 GetAsyncEnumerator(_cancellationToken);
 }
}

Most of this code just stores an async enumerable and a cancellation token, so it can, in
the GetAsyncEnumerator method, call the original enumerable’s GetAsyncEnumerator
method and pass the cancellation token as a parameter.

This solves the first problem. It lets us pass a cancellation token to GetAsyncEnumerator
when it’s used by await foreach. However, it leaves us with the second problem—
receiving the token in the method generating the values.

Luckily, the C# compiler can do this; it will pass the cancellation token as a param-
eter to the method generating the sequence if we just tell it which parameter to use.
To indicate which parameter to use, we need to decorate it with the [Enumerator
Cancellation] attribute. We now know how to modify the code from listing 14.2 to use
a cancellation token.

Listing 14.5  Async yield return example with cancellation

private async IAsyncEnumerable<int> AsyncYieldDemo(
 [EnumeratorCancellation] CancellationToken cancellationToken = default)
{
 yield return 1;
 await Task.Delay(1000, cancellationToken);
 yield return 2;
}

public async Task UseAsyncYieldDemo()
{
 var cancel = new CancellationTokenSource();
 var collection = AsyncYieldDemo();
 await foreach(var current in
 collection.WithCancellation(cancel.Token))
 {
 Console.WriteLine($"Got {current}");
 }
}

In this listing, we added a CancellationToken parameter to the AsyncYieldDemo and
decorated it with the [EnumeratorCancellation] attribute to allow AsyncYieldDemo
to be canceled. We then used WithCancellation to pass the cancellation token to
AsyncYieldDemo.

Obviously, because we call AsyncYieldDemo and iterate over it in the same method,
we can just pass the cancellation token to AsyncYieldDemo directly, but this isn’t always
possible. The code that creates the IAsyncEnumerable<T> and the code that iterates
over it might be in different components. We might not have access to source code that
creates the IAsyncEnumerable<T> at all, or the code can be in different methods, and
using WithCancellation is just simpler than passing the cancellation token all the way
to the code that created the enumerable.

Calls original enumerable
with cancellation token

Parameter to receive
cancellation token

Uses WithCancellation to
pass cancellation token

	 211Other options

While this sample supports cancellation, it will never cancel the operation. Now let’s
see what happens when we do cancel. We’ll start with cancellation before the loop even
starts.

Listing 14.6  Canceling the iteration before the loop starts

private async IAsyncEnumerable<int> AsyncYieldDemo(
 [EnumeratorCancellation] CancellationToken cancellationToken=default)
{
 yield return 1;
 await Task.Delay(1000, cancellationToken);
 yield return 2;
}

public async Task UseYieldDemo()
{
 var cancel = new CancellationTokenSource();
 cancel.Cancel();
 await foreach(var current in
 AsyncYieldDemo().WithCancellation(cancel.Token))
 {
 Console.WriteLine($"Got {current}");
 }
}

In this example, we call the cancellation token source’s Cancel method before the
loop starts. If we run this, we’ll see that the program will print “Got 1” and only then
crash with a TaskCanceledException. Why did it run the first iteration of the loop if
the cancellation token was already canceled before we started?

We need to remember that, as discussed in chapter 9, a CancellationToken is just
a thread-safe flag we can use to check whether an operation needs to be canceled. In
this listing, we don’t check for cancellation in the loop at all. In the AsyncYieldDemo
method, we also generate the first value without checking for cancellation; the first time
anyone checks for cancellation is inside the Task.Delay call.

14.4	 Other options
In addition to the WithCancellation method, there’s also a ToBlockingEnumerable
method that wraps the IAsyncEnumerable<T> in a non-asynchronous IEnumerable<T>
you can use in a normal foreach loop in non-asynchronous code. The ToBlocking
Enumerable method lets you consume an asynchronous API from non-asynchronous
code. This is equivalent to calling Wait() on each task returned by MoveNextAsync.

The ToBlockingEnumerable method, like other ways of calling Wait(), negates the
benefits of using asynchronous operation and can cause deadlocks in some situations.
It should be used only when you must use an asynchronous collection from non-
asynchronous code and have no other choice.

And finally, there’s the ConfigureAwait extension method. Calling ConfigureAwait
on the IAsyncEnumerable<T> object is equivalent to calling ConfigureAwait on all
tasks returned by MoveNextAsync.

Cancels the loop
before starting

212 Chapter 14  Generating collections asynchronously/await foreach and IAsyncEnumerable

The ConfigureAwait method lets you decide if the code after the await will run in
the same context as the code before the await. This typically only matters in local UI
applications (see chapter 11 for more details).

14.5	 IAsyncEnumerable<T> and LINQ
LINQ is a C# feature that lets us use SQL-like operators (such as Select and Where) to
transform any sequence of items (usually used with the .NET collections). LINQ uses
the IEnumerable<T> interface to interact with the sequence you are transforming.

At the time of this writing, the latest version of .NET (version 9) does not support
LINQ with IAsyncEnumrable<T>. However, the .NET Reactive Extensions (RX) team
has published the System.Linq.Async library (available via NuGet), which adds sup-
port for all the LINQ operators to IAsyncEnumerable<T> (and as such, to all asynchro-
nous collections and sequences as well).

If .NET adds built-in support for asynchronous LINQ in the future, it’s likely they will
use the System.Linq.Async library from the RX team (IAsyncEnumerable<T> itself was
originally written by the RX team) or, at least, make the built-in LINQ support compati-
ble with System.Linq.Async.

14.6	 Example: Iterating over asynchronously retrieved data
Let’s say we need to process a binary-stream-containing numbers. We’ll write two meth-
ods. One reads the stream and extracts the numbers (using yield return) and one
processes the numbers. This stream can be a file, but it can also be a network connec-
tion. For simplicity, we’ll start with a non-asynchronous version.

Listing 14.7  Reading a stream of numbers non-asynchronously

public class NumbersProcessor
{
 private IEnumerable<int> GetNumbers(Stream stream)
 {
 var buffer = new byte[4];
 while(stream.Read(buffer, 0, 4) == 4)
 {
 var number = BitConverter.ToInt32(buffer);
 yield return number;
 }
 }

 public void ProcessStream(Stream stream)
 {
 foreach(var number in GetNumbers(stream))
 {
 Console.WriteLine(number);
 }
 }
}

Gets the next 4 bytes
from the stream

Converts them to an int

Returns the int

For each number in stream

Processes the number

	 213Example: BlockingCollection<T>-like asynchronous queue

The first method, GetNumbers, reads the stream and produces a sequence of numbers.
It stops as soon as it can’t retrieve a whole number. The second method, ProcessStream,
uses the first method and then does something with the numbers (because this is
sample code, we’re going to just print them to the console).

As we’ve said earlier in this book, operations such as reading from a file or a com-
munication channel are often best done asynchronously. So let’s take everything we’ve
discussed in this chapter and make the code asynchronous.

Listing 14.8  Reading a stream of numbers asynchronously

public class Async NumbersProcessor
{
 private async IAsyncEnumerable<int>
➥ GetNumbers(Stream stream)
 {
 var buffer = new byte[4];
 while(await stream.ReadAsync(buffer, 0, 4) == 4)
 {
 var number = BitConverter.ToInt32(buffer);
 yield return number;
 }
 }

 public async Task ProcessStream(Stream stream)
 {
 await foreach(var number in GetNumbers(stream))
 {
 Console.WriteLine(number);
 }
 }
}

The asynchronous code is the same as the non-asynchronous code, except that we
added the words async and await in some places. To read the stream asynchronously,
we need to call Stream.ReadAsync instead of Stream.Read, which is an important
change. We want to await the ReadAsync call, so we add an await before ReadAsync.
To be able to use await, we have to make the method async, and async methods can’t
return IEnumerable<int>, so we mark the method as async and change the return
type to IAsyncEnumerable<int>.

Now we’ve finished modifying the GetNumbers method and move on to Process
Stream. To process the IAsyncEnumrable<int> returned by GetNumbers, we need to
replace the foreach with an await foreach. We can only use await foreach in an async
method, so we mark the method as async and change the return type from void to Task
(we talked about the problems with async void methods near the end of chapter 3).

14.7	 Example: BlockingCollection<T>-like asynchronous queue
In the previous chapter, in listing 13.11, we used BlockingCollection<T> to imple-
ment a work queue with 10 worker threads. BlockingCollection<T> has the

IEnumerable<int> to async
IAsyncEnumerable<int>

stream.Read to await
stream.ReadAsync

void to async Task

foreach to await
foreach

214 Chapter 14  Generating collections asynchronously/await foreach and IAsyncEnumerable

GetConsumingEnumerable method that lets the code using it use foreach, which results
in clean and readable code. However, BlockingCollection<T> does not support asyn-
chronous operations.

In listing 13.12, we used Channel<T> to write an asynchronous version of the same
program, but the Channel<T> interface isn’t as nice. We had to use an infinite loop to
read the items from the queue and use an exception to signal the work is done and that
there will be no more items.

Now, with IAsyncEnumerable<T>, we can easily write a class that implements a
BlockingCollection<T>-like GetConsumingEnumerable on top of Channel<T>. This
example only implements the Add and GetConsumingEnumerable methods (which are
all we need to implement our work queue).

Listing 14.9  Async version of BlockingCollection<T>.GetConsumingEnumerable

public class ChannelAsyncCollection<T>
{
 private Channel<T> _channel = Channel.CreateUnbounded<T>();
 public void Add(T item)
 {
 _channel.Writer.TryWrite(item);
 }

 public void CompleteAdding()
 {
 _channel.Writer.Complete();
 }
 public async IAsyncEnumerable<T> GetAsyncConsumingEnumerable()
 {
 while (true)
 {
 T next;
 try
 {
 next = await _channel.Reader.ReadAsync();
 }
 catch (ChannelClosedException)
 {
 yield break;
 }
 yield return next;
 }
 }
}

The Add method just calls the channel writer’s TryWrite method. TryWrite shouldn’t
fail on unbounded channels, but in production code, we should probably check the
value returned from TryWrite and throw an exception if it’s false.

The GetAsyncConsumingEnumerable method is a bit more complicated; at its core, it
is just a loop calling the channel reader’s ReadAsync:

	 215Example: BlockingCollection<T>-like asynchronous queue

 public async IAsyncEnumerable<T> GetAsyncConsumingEnumerable()
 {
 while (true)
 {
 yield return await _channel.Reader.ReadAsync();
 }
 }

But this code doesn’t detect when there is no more data and we should end the loop.
When there is no more data, ReadAsync will throw an exception. We need to catch this
exception and end the iteration:

 public async IAsyncEnumerable<T> GetAsyncConsumingEnumerable()
 {
 while (true)
 {
 try
 {
 yield return await _channel.Reader.ReadAsync();
 }
 catch (ChannelClosedException)
 {
 yield break;
 }
 }
 }

However, this version of GetAsyncConsumingEnumerable doesn’t compile because you
can’t use yield return inside a try block. We must move the yield return outside of
the try block, and then we get the code from listing 14.7:

 public async IAsyncEnumerable<T> GetAsyncConsumingEnumerable()
 {
 while (true)
 {
 T next;
 try
 {
 next = await _channel.Reader.ReadAsync();
 }
 catch (ChannelClosedException)
 {
 yield break;
 }
 yield return next;
 }
 }

Now that we have our asynchronous channel-based collection, we can use it to write a
work queue. This is an asynchronous adaptation of the BlockingCollection<T>-based
work queue from listing 13.11.

Detects when
iteration is complete

Moves the yield return
outside of the try block

216 Chapter 14  Generating collections asynchronously/await foreach and IAsyncEnumerable

Listing 14.10  Async work queue with 10 threads

ChannelAsyncCollection <int> asyncCollection =
 new ChannelAsyncCollection <int>();
Task[] workers = new Task[10];
for(int i=0; i<workers.Length; i++)
{
 var threadNumber = i;
 workers[i] = Task.Run(async () =>
 {
 var rng = new Random((int)threadNumber);
 int count = 0;
 await foreach (var currentValue in
 asyncCollection.GetAsyncConsumingEnumerable())
 {
 Console.WriteLine($"thread {threadNumber} value {currentValue}");
 Thread.Sleep(rng.Next(500));
 count++;
 }
 Console.WriteLine($"thread {threadNumber}, total {count} items");
 });
}
for(int i=0;i<100;i++)
{
 asyncCollection.Add(i);
}
asyncCollection.CompleteAdding();
await Task.WhenAll(workers);

This code creates a ChannelAsyncCollection<int> to hold the data we need to pro-
cess in the background. It then starts 10 background tasks to do this processing, and
each thread uses foreach and GetAsyncConsumingEnumerable to get the items to pro-
cess. To simulate the processing, we just wait a small random amount of time and print
the number. We insert the numbers 0 to 99 into the queue as a stand-in for the data we
want to process.

Summary

¡	The yield return and yield break keywords can be used in conjunction with
async/await. You mark the method as async and return IAsyncEnumerable<T>
instead of an IEnumerable<T>, and then you can use await in the iterator method.

¡	IAsyncEnumerable<T> and IAsyncEnumerator<T> are the asynchronous, async
/await-compatible versions of IEnumerable<T> and IEnumerator<T>.

¡	The compiler transforms the method into a class, performing both the yield
return transformation we talked about in chapter 2 and the await transforma-
tion we discussed in chapter 3.

¡	To iterate over the resulting IAsyncEnumerable<T>, use await foreach instead
of foreach.

Creates 10 worker threads

Adds 100 items to process

Signals no more items

Waits for all threads to finish

	 217Summary

¡	await foreach is like a regular foreach, except it performs an await at each
iteration.

¡	You can cancel an iteration by using the WithCancellation extension method.
This method will pass a cancellation token to the IAsyncEnumerable<T> (or, if
the IAsyncEnumerable<T> was created with yield return, it optionally passes
the cancellation token to the method generating the sequence). As always with
cancellation tokens, the token is just a flag. To stop the iteration, there needs to
be code that checks the status of the token and stops the iteration.

¡	The ConfigureAwait extension method for IAsyncEnumerable<T> works like
calling Task.ConfigureAwait at every iteration. We discussed the pros and cons
of ConfigureAwait in chapter 11.

¡	The ToBlockingEnumerable extension method wraps the IAsyncEnumerable<T>
in an IEnumerable<T> that does the equivalent of calling Task.Wait at every
iteration. Like Task.Wait, it can cause performance problems and deadlocks. It
should be used only for calling asynchronous APIs from non-asynchronous code
and only if the API supports this use case.

¡	There is no built-in support for LINQ for asynchronous sequences, but the
System.Linq.Async NuGet by the .net RX teams adds asynchronous LINQ
support.

¡	yield return and await foreach can be used to write simple code that generates
and processes sequences of asynchronous generated or retrieved data items (see
listing 14.8).

¡	yield return and await foreach can also be used to build asynchronous work
queues and other multithreaded infrastructure (see listing 14.9).

219

index
A
Abort method  41, 123
AcceptAsync method  72, 74
Accept method  72
AddOrUpdate method  196
AddToAny method  183
AggregateException  29
Application.DoEvents method  160
arrays, efficiency of  187
async and await keywords
async/await  69

AggregateException  170
benefits of  75
downside of  76–79
locks and  64–67
multithreading  36
ValueTask  35
when to use  79

async/await feature  10, 13
async/await keywords  21, 135

how they work  29–33
Task class  23–29

async/await programming model, where code runs
after await  62–64

asynchronous code
controlling on which thread it runs  163

controlling on which thread it runs,
Task.Yield  162

exceptions and  167–170
asynchronous collections

canceling  209–211
generating  206–209

asynchronous operations, old-style  142
asynchronous programming  8–11

asynchronous data structures  143–145
benefits on servers  70–75
continuations, choosing where to run  139
controlling on which thread asynchronous code

runs  151–154
controlling on which thread code runs  147, 161
generating collections asynchronously  203, 211,

212, 214–216
iterating over collections asynchronously 

204–206
multicore CPUs  6
multithreading and  59–62
TaskCompletionSource class  141
using with multithreading  11

async operation  154
atomic operations  47
await

asynchronous data structures  143–145
TaskCompletionSource class  141

220 index

await foreach keyword  207
await foreach loop  205, 206
await keyword  135

where code runs after  62–64
await-threading behavior  148–151

non-UI threads  150
UI threads  149

B
background processing  105

processing items in parallel  106–115
sequential processing in  115–120

BackgroundProc method  127
background tasks  122–133
BackgroundWork method  136
BeginXXX method  142, 143
Bind method  72
BlockingCollection class  117–119
blocking operations  6

C
callback parameter  142
callbacks, when caller cancels operation  130
CancelAfter method  131
CancelFlag class  127
canceling

asynchronous collections  209–211
background tasks  122, 132
tokens  133
using exception  130

CancellationToken  24
CancellationToken.None property  144, 145
CancellationToken parameter  210
CancellationToken.Register method  131
cancellation tokens, overview of  123–129
CancellationTokenSource class  127
CancellationTokenSource.

CreateLinkedTokenSource method  132
Cancel method  126, 131, 211
Click event  167
cloud computing  11
collections

generating asynchronously  214–216
iterating over asynchronously  204–206
problems with using regular collections  174–178

compiler, lambda functions  14–16

compiler, rewriting code, yield return feature 
16–20

Complete event  131
concurrent collections  178–187

async alternatives for BlockingCollection  184
BlockingCollection<T>  181–184
ConcurrentBag<T>  186
ConcurrentDictionary<TKey,TValue>  178–181
ConcurrentQueue<T>  185
ConcurrentStack<T>  185
when not to use  187
when to use  186

ConfigureAwait, options for  161
ConfigureAwait(false) method  154–161
ConfigureAwait method  211, 212
ConnectAsync method  72
context switch  5
continuations, choosing where to run  139
ContinueWith method  26, 31
Control.BeginInvoke method  52, 151
Control.Invoke method  52
coroutines  17
counter variable  86
CPUs (central processing units), multicore  6
CreateAndInitilizeItem method  174
CultureInfo object  55
CurrentPrincipal property  56
Current property  19

D
deadlocks  64, 88–94

accessing same variables from multiple
threads  50

decimal variable  82
Dequeue method  198
Dictionary<TKey,TValue>  174
Dispatcher.BeginInvoke method  52
Dispatcher.Invoke method  52
DoEvents loop  160

E
Elapsed property  14
EndXXX method  142, 143
events  134

old-style asynchronous operations  142
TaskCompletionSource class  135–138

	 221index

waiting for initialization  140
Exception property  28
exceptions  166

AggregateException  170
asynchronous code and  167–170
async void methods  172
lost exceptions  171

F
FIFO (first-in, first-out)  143
File.ReadAllBytesAsync method  25, 61
File.ReadAllBytes method  61
foreach keyword  204
foreach loop  211
for loop  46
frozen collections  200

G
GetAsyncConsumingEnumerable method  214
GetAsyncEnumerator method  205, 209, 210
GetConsumingEnumerable method  214
GetEnumerator method  204
GetOrAdd method  179, 196
GetValue method  36

H
HttpContext.Current property  148

I
IAsyncEnumerable<T> interface  205, 209
IAsyncEnumerator<T> interface  205
IAsyncResult object  142
IEnumerable interface  18, 205
IEnumerable<int> type  207
IEnumerable<T>  211
IEnumerable<T> interface  18
IEnumerator<T> interface  18, 19
immutable collections  187–199

ImmutableArray<T> class  198
ImmutableDictionary<TKey,TValue> class  195
ImmutableHashSet<T> class  197
ImmutableInterlocked class  194
ImmutableList<T> class  197
ImmutableQueue<T> class  198
ImmutableSortedSet<T> class  197

ImmutableStack<T> class  198
overview of  187–193
using  193
when to use  199

initialization, waiting for  140
InnerException property  29
InterlockedCompereExchange method  199
InterlockedExchange method  199
InterlockedInitilize method  199
InvalidOperationException  158, 183
IsBackground property  55
IsCanceled property  28
IsCancellationRequested property  126
IsCompleted property  25, 29, 136
IsCompletedSuccessfully property  28, 32, 136
IsEmpty property  190
IsFaulted property  28, 136
Item object  176, 177, 178
items, processing in parallel  106–115

asynchronously  110
Parallel class  112–115
with Thread class  107–108
with thread pool  108–110

iterator methods  17

J
Join method  40, 43

L
lambda functions  14–16
LINQ (Language Integrated Query)  212
Listen method  72
Lock class  50
locks

accessing same variables from multiple
threads  49

async/await and  64–67
lock statement  83, 84, 85, 124
Lock type  85
long type  82

M
Main method  39, 55, 79
memory access reordering  85–88
MoveNextAsync method  205, 208, 209, 211
MoveNext method  19

222 index

MTAThread attribute  55
multithreading  3–6, 36, 38, 58

accessing same variables from multiple
threads  46–51

asynchronous programming and  59–62
classic pitfalls of  81
deadlocks  88–94
considerations for native UI apps  52
edge cases  79
memory access reordering  85–88
multicore CPUs  6
partial updates  82–85
race conditions  94–97
running in another thread  39–46
starvation  99–101
synchronization  97–99
synchronization methods  53
threads  54–56
UI threads  67
using with asynchronous programming  11
waiting for threads  52

Mutex class  49, 64, 89
mutexes, accessing same variables from multiple

threads  49

N
native UI apps  52

O
object keyword  50
object type  85
old-style asynchronous operations  142

P
Parallel class  112–115
partial updates  82–85
Peek method  198
persistent queues  119–120
PlatformNotSupportedException  123
Pop method  190, 198
Post method  153, 164
processing items in background, in parallel 

106–115
asynchronously  110
Parallel class  112–115
with Thread class  107–108

with thread pool  108–110
Push method  188, 190, 195

Q
queues, persistent  119–120
QueueUserWorkItem method  42, 44

R
race conditions  94–97
ReadAllBytesAsync method  168
ReadAsync method  25, 74
Read method  25
ReceiveAsync method  72
Remove method  180
RequiresInit class  140
Reset method  53
Result property  28, 29, 135, 136, 137
Resume method  41
Run method  152
RX (Reactive Extensions)  212

S
Semaphore class  64, 89
SendAsync method  72, 74
Send method  72
sequential processing, in background  115–120

persistent queues  119–120
with Thread class  115
work queue pattern and

BlockingCollection  117–119
servers, asynchronous benefits on  70–75
SetCanceled method  137
setException callback  135
setException method  31
setException parameter  34
SetItem method  193, 197
Set method  53
setResult callback  135
setResult method  31
setResult parameter  34
SetXXX method  138
single-threaded environment  124
software efficiency  11
stack variables  191
starvation  99–101
state parameter  143

	 223index

STAThread attribute  55
Status property  25, 29, 170
Stream.BeginRead method  142
Stream.EndRead method  142
Stream.ReadAsync method  24
Stream.Read method  24, 142
structs  82
Suspend method  41
synchronization  97–99
SynchronizationContext interface  52
synchronization methods  53
System.Diagnostics.Stopwatch class  70
System.Linq.Async library  212
System.Thrading.Lock class  50
System.Threading.Thread class  39
System.Threading.ThreadPool class  42

T
TakeFromAny method  183
Take method  183
Task class  23–29, 142
TaskCompletionSource<T> class  135
TaskCompletionSource class  135–138, 141, 209
TaskCompletionSource<int> class  140
Task.Delay(1000) method  25
Task.Exception property  29, 35, 170
Task.Factory.FromAsync method  142, 143
taskkill command  123
Task object  169
Task.Result property  157
Task.Run method  44–46, 60, 68, 140
TaskScheduler class  163

controlling on which thread asynchronous code
runs  163

overview of  163
TaskScheduler.Default static property  164
Task.Status property  32
Task.Wait method  28
Task.WhenAll method  45
Task.Yield  162
Text property  163
Thread class  39, 40, 41, 43, 45, 52, 54, 107–108, 123

sequential processing in background with  115
Thread constructor  150
Thread.CurrentCulture property  55
Thread.CurrentPrincipal property  55

Thread.IsBackground property  55
Thread.Join loop  45
thread pool  108–110
ThreadPool class  42, 44, 45
threads

await-threading behavior  148–151
controlling on which thread asynchronous code

runs  147, 151–161, 163
running in another thread  39–46
settings  54–56
waiting for  52

thread-safe collections  173
concurrent collections  178–187
frozen collections  200
immutable collections  187–199
problems with using regular collections  174–178

Thread.SetApartmentState method  55
Thread.Start method  39–42
throw statement  167
timeout, implementing  131
ToBlockingEnumerable method  211
ToBuilder method  196, 197
ToFrozenDictioanry method  200
ToFrozenSet method  200
ToImmutable method  196
tokens, canceling  133
TryAdd method  183, 196
TryAddToAny method  183
try block  167
try-catch blocks  168
TryGetValue method  174, 175, 179
TryPop method  188, 190, 195
TryRemove method  180, 196
TrySetCanceled method  137, 138
TrySetException method  137, 141
TrySetResult method  135, 136, 138, 141
TrySetXXX method  138
try statement  168
TryTakeFromAny method  183
TryTake method  186
TryUpdate method  180, 196
TryWrite method  214

U
UI (user interface) threads  67

await in  149

224 index

V
value field  140
ValueTask  35, 36
variables, accessing from multiple threads  46–51

deadlocks  50
immutable shared data  49
locks and mutexes  49
no shared data  48

void method  39
volatile keyword  87

W
waiting for threads  52
Wait method  28, 29, 52
WithCancellation method  209, 211
work queue pattern  117–119

Y
yield return feature  16

Logical flow vs. control flow for asynchronous code

This figure shows the difference between the logical flow of the code and what really happens
in asynchronous code. What really happens is a really big un-understandable mess—but
that’s ok because await will do most of the work for us so we don’t have to think about it.

Until something goes wrong and we have to debug it—then we really have to
know what’s going on under the hood.

Read file 1
(hard drive)

Time

Processing

Read file
(waiting)

Processing

Web request received
(not our code)

Send response to
browser (not our code)

Logical flow Running the flow asynchronously
(three concurrent executions)

First processing for
request 1

Second processing
for request 1

Multiple web requests
received (not our code)

First processing for
request 2

First processing for
request 3

Second processing
for request 2

Second processing
for request 3

Ask hard drive to read file 1.

Read file 2
(hard drive)

Send response to
browser (not our code).

Read file 3
(hard drive)

Ask hard drive to read file 2.

Ask hard drive to read file 3.

Ask network to send response 1.

Ask network to send response 2.

Ask network to send response 3.

Send response to
browser (not our code).

Send response to
browser (not our code).

Nir Dobovizki

ISBN-13: 978-1-63343-865-1

A
synchronous and multithreaded programs can perform
multiple tasks simultaneously without losing speed or
reliability. But getting concurrency right can challenge

even experienced developers. Th is practical book teaches you
to deliver concurrent C# apps that are lighting fast and free
of the deadlocks and other synchronization issues that under-
mine performance and take forever to fi nd.

C# Concurrency equips programmers with a comprehensive
understanding of multithreading and asynchronous program-
ming, focusing on the practical use of the C# async-await
feature to simplify asynchronous tasks. It teaches how to avoid
common pitfalls, addresses classic multithreading issues like
deadlocks and race conditions, and advanced topics such as
controlling thread of execution and using thread-safe
collections.

What’s Inside
● .NET multithreading and asynchronous primitives
● When to use concurrency techniques—and when not to!
● Confi dently use async/await

For experienced C# programmers. No knowledge of asynchro-
nous programming required.

Nir Dobovizki is a senior software architect and consultant who
has worked on concurrent and asynchronous systems since the
late 90s.

Th e technical editor on this book was Paul Grebenc.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

C# Concurrency

SOFTWARE DEVELOPMENT/C#

M A N N I N G

“Gives you knowledge you
can use immediately, without

wading into unnecessary
 complexity. Invaluable.”—Oren Eini, RavenDB

“A clear discussion of
how to use C# features to

harness the power of
 multi-core CPUs.”—Robert Robey, AMD

“A great starting point for
concurrency, threading
 and asynchronicity.”—Jiří Činčura, Microsoft

“Gives you the confi dence
to tame concurrency and

 asynchronous programming.”—Milorad Imbra, FEVO

See first page

	C# Concurrency
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1
	1 Asynchronous programming and multithreading
	1.1	What is multithreading?
	1.2	Introducing multicore CPUs
	1.3	Asynchronous programming
	1.4	Using multithreading and asynchronous programming together
	1.5	Software efficiency and cloud computing

	2 The compiler rewrites your code
	2.1	Lambda functions
	2.2	Yield return

	3 The async and await keywords
	3.1	Asynchronous code complexity
	3.2	Introducing Task and Task<T>
	3.2.1	Are we there yet?
	3.2.2	Wake me up when we get there
	3.2.3	The synchronous option
	3.2.4	After the task has completed

	3.3	How does async/await work?
	3.4	async void methods
	3.5	ValueTask and ValueTask<T>
	3.6	What about multithreading?

	4 Multithreading basics
	4.1	Different ways to run in another thread
	4.1.1	Thread.Start
	4.1.2	The thread pool
	4.1.3	Task.Run

	4.2	Accessing the same variables from multiple threads
	4.2.1	No shared data
	4.2.2	Immutable shared data
	4.2.3	Locks and mutexes
	4.2.4	Deadlocks

	4.3	Special considerations for native UI apps
	4.4	Waiting for another thread
	4.5	Other synchronization methods
	4.6	Thread settings
	4.6.1	Thread background status
	4.6.2	Language and locale
	4.6.3	COM Apartment
	4.6.4	Current user
	4.6.5	Thread priority

	5 async/await and multithreading
	5.1	Asynchronous programming and multithreading
	5.2	Where does code run after await?
	5.3	Locks and async/await
	5.4	UI threads

	6 When to use async/await
	6.1	Asynchronous benefits on servers
	6.2	Asynchronous benefits on native client applications
	6.3	The downside of async/await
	6.3.1	Asynchronous programming is contagious
	6.3.2	Asynchronous programming has more edge cases
	6.3.3	Multithreading has even more edge cases
	6.3.4	async/await is expensive

	6.4	When to use async await

	7 Classic multithreading pitfalls and how to avoid them
	7.1	Partial updates
	7.2	Memory access reordering
	7.3	Deadlocks
	7.4	Race conditions
	7.5	Synchronization
	7.6	Starvation

	Part 2
	8 Processing a sequence of items in the background
	8.1	Processing items in parallel
	8.1.1	Processing items in parallel with the Thread class
	8.1.2	Processing items in parallel with the thread pool
	8.1.3	Asynchronously processing items in parallel
	8.1.4	The Parallel class

	8.2	Processing items sequentially in the background
	8.2.1	Processing items sequentially in the background with the Thread class
	8.2.2	The work queue pattern and BlockingCollection
	8.2.3	Processing important items with persistent queues

	9 Canceling background tasks
	9.1	Introducing CancellationToken
	9.2	Canceling using an exception
	9.3	Getting a callback when the caller cancels our operation
	9.4	Implementing timeouts
	9.5	Combining cancelation methods
	9.6	Special cancellation tokens

	10 Await your own events
	10.1	Introducing TaskCompletionSource
	10.2	Choosing where continuations run
	10.3	Example: Waiting for initialization
	10.4	Example: Adapting old APIs
	10.5	Old-style asynchronous operations (BeginXXX, EndXXX)
	10.6	Example: Asynchronous data structures

	11 Controlling on which thread your asynchronous code runs
	11.1	await-threading behavior
	11.1.1	await in UI threads
	11.1.2	await in non-UI threads

	11.2	Synchronization contexts
	11.3	Breaking away—ConfigureAwait(false)
	11.4	More ConfigureAwait options
	11.5	Letting other code run: Task.Yield
	11.6	Task schedulers

	12 Exceptions and async/await
	12.1	Exceptions and asynchronous code
	12.2	await and AggregateException
	12.3	The case of the lost exception
	12.4	Exceptions and async void methods

	13 Thread-safe collections
	13.1	The problems with using regular collections
	13.2	The concurrent collections
	13.2.1	ConcurrentDictionary<TKey,TValue>
	13.2.2	BlockingCollection<T>
	13.2.3	Async alternatives for BlockingCollection
	13.2.4	ConcurrentQueue<T> and ConcurrentStack<T>
	13.2.5	ConcurrentBag<T>
	13.2.6	When to use the concurrent collections
	13.2.7	When not to use the concurrent collections

	13.3	The immutable collections
	13.3.1	How immutable collections work
	13.3.2	How to use the immutable collections
	13.3.3	ImmutableInterlocked
	13.3.4	ImmutableDictionary<TKey,TValue>
	13.3.5	ImmutableHashSet<T> and ImmutableSortedSet<T>
	13.3.6	ImmutableList<T>
	13.3.7	ImmutableQueue<T> and ImmutableStack<T>
	13.3.8	ImmutableArray<T>
	13.3.9	When to use the immutable collections

	13.4	The frozen collections
	13.4.1	When to use the frozen collections

	14 Generating collections asynchronously/await foreach and IAsyncEnumerable
	14.1	Iterating over an asynchronous collection
	14.2	Generating an asynchronous collection
	14.3	Canceling an asynchronous collection
	14.4	Other options
	14.5	IAsyncEnumerable<T> and LINQ
	14.6	Example: Iterating over asynchronously retrieved data
	14.7	Example: BlockingCollection<T>-like asynchronous queue

	index

